点击切换搜索课件文库搜索结果(7707)
文档格式:PPT 文档大小:2.29MB 文档页数:87
一 信号的分类 二 信号的描述 三 信号的时域统计分析 四 信号的幅值域分析 五 信号的频域描述(分析) 六 相关分析
文档格式:PPT 文档大小:2.17MB 文档页数:55
函数极限的定义 在半径为r 的圆上任取一小段圆弧,记它所对的圆心角的弧度为 2x,则圆弧长度为2xr,而圆弧所对的弦的长度为2 sin r x,弦长与弧长 之比值 y是 x 的函数,其关系式为
文档格式:PPT 文档大小:1.73MB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f (x) 在点 x 0 的某个邻域中有定义,并且成立 lim x→x0 f (x) = f (x ) 0 , 则称函数 f (x) 在点 x 0 连续,而称 x 0 是函数 f (x) 的连续点
文档格式:PPT 文档大小:1.28MB 文档页数:29
有界性定理 定理3.4.1若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有 界。 证用反证法。 若f(x)在[ab]上无界,将[ab]等分为两个小区间[aa+b]与 a+b,b,则f(x)至少在其中之一上无界,把它记为[a,b] 再将闭区间[ab]与等分为两个小区间a1,a1+b]与a1+b
文档格式:PPT 文档大小:564.5KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s = s(t)来描述,它在时 间段[t, t + t]中位移的改变量为s = s( t + t) − s(t),所以当t 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[t, t + t]中的平均速度
文档格式:PPT 文档大小:596.5KB 文档页数:20
复合函数求导法则 定理4.4.1(复合函数求导法则)设函数u=g(x)在x=x可导, 函数y=f(u)在u=uo=g(x)处可导,则复合函数y=f(g(x))在x=x可 导,且有 证因为y=f(u)在u处可导,所以可微。由可微的定义,对任 意一个充分小的△u≠0,都有
文档格式:PPT 文档大小:1.45MB 文档页数:41
曲线坐标 设U为uv平面上的开集,是xy平面上开集,映射 T: x =x(u,v), y=y(u,v) 是U到v的一个一一对应,它的逆变换记为T:u=u(x,y),v=v(x,y y 在U中取直线u=u,就相应得到xy平面上的一条曲线 =x(,v),=y(,)
文档格式:PPT 文档大小:1.1MB 文档页数:36
仔细观察上一节中的几幅图像后可以得到这样的直觉:对于一般 的以2为周期的函数f(x),除了个别点之外(看来是不连续点),当 m→∞时,它的 Fourier级数的部分和函数序列{m(x)}
文档格式:PPT 文档大小:1.37MB 文档页数:38
本节介绍函数微分的一些应用,包括极值和最值问题、函数作 图以及在数学建模中的应用。 极值问题 f (x)的全部极值点必定都在使得 f (x) = 0和使得 f (x)不存在的 点集之中。使 f (x) = 0的点称为 f (x)的驻点
文档格式:PPT 文档大小:788.5KB 文档页数:16
求方程 f(x)=0 的解(或根),就是要寻找一个数x,使得满足 f(x)=0 求方程的解主要方法有两种:解析方法和数值方法
首页上页646647648649650651652653下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7707 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有