点击切换搜索课件文库搜索结果(7041)
文档格式:PDF 文档大小:166.7KB 文档页数:5
教学目的 本节介绍有界变差函数的性质.证明有界变差函数的 Jordan 分解定理. 教学要点 有界变差函数的概念, 变差函数的性质, Jordan 分解定理
文档格式:PDF 文档大小:193.49KB 文档页数:7
在数学分析课程中我们知道, 微分与积分具有密切的联系. 一方面, 若 f (x) 在[a,b] 上连续, 则对任意 x ∈[a,b] 成立 f (t)dt f (x). x
文档格式:DOC 文档大小:1.13MB 文档页数:6
1.求过点(3,0,-1)且与平面3x-7y+5-12=0平行的平面方程. 2.求过点Mo(2,9,-6)且与连接坐标原点及点M的线段OM垂直的平面方程
文档格式:PDF 文档大小:224.49KB 文档页数:10
教学目的 本节讨论测度空间的乘积空间,并且证明一个重要的定理 —Fubini 定理. 本节要点 乘积测度的构造利用了§2.2 测度的延拓定理. Fubini 定理是 积分理论的基本定理之一,它是关于二元函数的二重积分,累次积分交换积 分顺序的定理.Fubini 定理在理论推导和计算积分方面有广泛的应用
文档格式:PDF 文档大小:177.3KB 文档页数:6
教学目的 本节讨论直线上的 Riemann 积分(包括广义 Riemann 积分) 与 Lebesgue 积分之间的关系.同时给出 Riemann 可积函数的一个判别条件. 本节要点 用测度理论可以给出函数 Riemann 可积的一个简明的充要条 件. 本节的主要结果表明 Lebesgue 积分是 Riemann 积分的推广. 利用 Lebesgue 积分的性质, 可以解决一些 Riemann 积分的问题
文档格式:PDF 文档大小:204.16KB 文档页数:9
教学目的 定义在测度空间上的函数可以自然产生出各种各样的集.为 用测度论的方法研究这个函数, 特别是在定义积分时, 必须要求这些集是可 测的. 由此产生了可测函数的概念.本节将给出可测函数的定义并讨论其基 本性质
文档格式:DOC 文档大小:1.74MB 文档页数:11
1.利用定积分定义计算由抛物线y=x2+1,两直线x=a、x=bb>a)及横轴所围成的图形的面积
文档格式:PDF 文档大小:220.19KB 文档页数:10
教学目的 本节利用§2.2 中一般测度的构造方法, 构造一个重要的测度, 即欧氏空间 n R 上的 Lebesgue 测度. Lebesgue 测度的建立, 为定义 Lebesgue 积 分打下基础. 本节要点 利用§2.2 一般测度的构造方法,可以较快的构造出 Lebesgue 测 度. Lebesgue 测度不仅具有抽象测度具有的基本性质, 而且还具有一些特有的 性质,如利用开集或闭集的逼近性质等. Lebesgue 可测集包含了常见的一些集
文档格式:DOC 文档大小:1.54MB 文档页数:20
1.在下列各式等号右端的空白处填入适当的系数,使等式成立: (1)dx- d(ax) (2)dx=d(7x-3) (3)xdx= d(r2); (4)xdx=d(5x2) (5)xdx=d(1-x2)
文档格式:PDF 文档大小:169.12KB 文档页数:5
我们知道 Riemann 积分的几何意义是曲边梯形的面积. 为在欧氏空间空间 n R 上推广 Riemann 积分的理论, 我们必须把象长度, 面积和体积等概念推广到 n R 中的更一般的集上 去. 本章将要定义的 n R 上的 Lebesgue 测度就是长度, 面积和体积等概念推广
首页上页660661662663664665666667下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7041 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有