点击切换搜索课件文库搜索结果(6811)
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:DOC 文档大小:78KB 文档页数:17
食品微生物检验是根据一小部分样品的结构对整批食品作出判断的。 本单元讲述了无菌取样操作,在讨论无菌取样的原因和采集方法之前,必须要理 解“无菌的”的这一术语,“无菌”一般用于取样中,意味着取样过程中,避免操作 引起污染。一个无菌样品的采集,应该通过这样一种方式,即:在收集过程中,本身 应避免污染,然后放入消毒容器中。 无菌样品的采集基本是为了支持、针对工厂的卫生条件状况的检查结果
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式 12 2 为方阵的顺序主子式。 定理设f是实二次型,则下述四条等价:
文档格式:PPT 文档大小:753KB 文档页数:60
第二章门电路 2.1概述 2.2分离元件门电路 2.3TTL与非门 2.4其它类型的TTL门电路 2.5MOS门电路
文档格式:DOC 文档大小:80KB 文档页数:2
3线性方程组 1.3.1数域K上的线性方程组的初等变换 举例说明解线性方程组的 Gauss消元法。 定义(线性方程组的初等变换)数域K上的线性方程组的如下三种变换 (1)互换两个方程的位置 (2)把某一个方程两边同乘数域K内一个非零元素c; (3)把某一个方程加上另一个方程的k倍,这里k∈K 的每一种都称为线性方程组的初等变换。 容易证明,初等变换可逆,即经过初等变换后的线性方程组可以用初等变换复原。 命题线性方程组经过初等变换后与原方程组同解
文档格式:DOC 文档大小:254.5KB 文档页数:8
信号的频域分析 1、周期信号的傅立叶级数(指数形式) f(t)=Fne n=-∞ n (t) dt 周期信号频谱的特点: 离散性 谐波性 收敛性 2、非周期信号的频域分析 傅立叶变换(傅立叶积分) F(j@)=f()e-odt f(t)= F(ja) do 2元-∞ 傅立叶变换的性质
文档格式:PPT 文档大小:528.5KB 文档页数:66
第一节概述 一、短路原因、类型、后果及计算短路 电流的目的 (一)主要原因: 1.电气设备、元件的损坏。 2.自然原因 3.人为事故
文档格式:DOC 文档大小:674.5KB 文档页数:18
第一章行列式 要求: 1、理解行列式的定义与性质;掌握三阶行列式的对角线计算方法 2、利用性质和展开定理会计算四阶行列式以及简单n阶行列式。 3、掌握克莱姆法则。 1.1排列与逆序 知识点:排列;逆序;对换。 一、排列 定义1(排列)n个(不同)自然数1,2,…,n组成的一个有序数组P1,P2,Pn称作 为n级排列,其中每个自然数p1称作(第i个)元素。 如213是一个3级排列。强调“有序” 那么1,2,3可以有多少种不同的排列呢?一一列出,共有6种。 乘法原理
文档格式:DOC 文档大小:46KB 文档页数:6
回忆水质监测方案设计,水样的采集、保存与运输,——检测 三大类指标:物理、化学、生物 水样预处理 消解:破坏有机物,溶解悬浮性固体,将各种价态的欲测元素转化为单一高价态或易于分 离的无机化合物。——清澈、透明、无沉淀。方法:湿式、干式(不适合处理测定 易挥发组分)
首页上页675676677678679680681682下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6811 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有