网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(6903)
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第九章 二重积分(9.3)三重积分及其计算
文档格式:PPT 文档大小:579KB 文档页数:25
三重积分及其计算 一、三重积分的概念 将二重积分定义中的积分区域 推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第七章 向量代数与空间解析几何(7.4)曲面及其方程
文档格式:PPT 文档大小:667.5KB 文档页数:42
曲面及其方程 一、曲面方程的概念 曲面的实例:水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义: 如果曲面S与三元方程F(x,y,)=0有下述关系: (1)曲面S上任一点的坐标都满足方程; (2)不在曲面S上的点的坐标都不满足方程; 那么,方程F(x,y,)=0就叫做曲面S的方程, 而曲面S就叫做方程的图形
吉林大学:《线性代数》课程教学资源(讲稿)第二章 行列式 §2.4 行列式的计算举例
文档格式:PDF 文档大小:109.8KB 文档页数:13
2.4行列式的计算举例 例4.1计算下面的n+1阶行列式,其中空白处的元素均为零.解将D按第n+1列展开,可得
吉林大学:《线性代数》课程教学资源(讲稿)第二章 行列式 §2.5 Cramer法则
文档格式:PDF 文档大小:98.51KB 文档页数:9
设有n个元方程组成的方程组,其系数构成的n阶行列式
西北工业大学:《线性代数》课程教学资源(讲稿)第六章 二次型
文档格式:DOC 文档大小:481KB 文档页数:12
第六章二次型 变量x1,x2,…,xn的二次齐次多项式 f(x1,x2,,xn)=a1x2+2a12x1x2+2a13x1x3+…+2anx1xn +a22x2+2a23x2x3+…+2a2nx2xn +amx 称为n元二次型,简称为二次型 a∈R:称f(x1,x2,…,xn)为实二次型(本章只讨论实二次型) a∈C:称f(x1,x2,…,xn)为复二次型 6.1二次型的矩阵表示 1.矩阵表示:令an=a(>i),则有
华北工业大学:《线性代数》课程教学资源(讲义)第三章 线性方程组 §1 消元法
文档格式:DOC 文档大小:192.5KB 文档页数:6
第三章线性方程组 在第一、二章中,我们曾经以行列式和逆阵为工具解决了一类线性方程组 的求解问题。本章将系统地解决一般线性方程组的求解问题。所用的工具是克 莱姆法则、初等变换、向量等
西北工业大学:《线性代数》课程教学资源(讲稿)第一章 n阶行列式(14-1.6)行列式的性质
文档格式:DOC 文档大小:225.5KB 文档页数:7
因为D对调两列得D2,相当于D对调两行得D 所以D2=D2=-D=-D 推论2D中某两行(列)元素对应相等→D=0 证因为对调此两行(列)后,D的形式不变 所以D=-D→D=0 例如,对于任意的a,bc,都有abc=0
天津师范大学:《线性代数 Linear Algebra》课程教学资源(课件讲义)第三章 矩阵的初等变换与线性方程组 Elementary Reductions of Matrices and Systems of Linear Equations
文档格式:PDF 文档大小:1.43MB 文档页数:40
本章总结 1.通过消元法(Gauss'Method)解线性方程组来引进矩阵的初等变换。 2.利用矩阵的“秩”来讨论线性方程组的解的情况。 3.最后介绍单位矩阵经初等变换得到“初等矩阵
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.4 外代数
文档格式:DOC 文档大小:296KB 文档页数:4
12-4外代数 12.4.1域K上的线性空间V的到域K上的线性空间W的r重交错映射的定义 定义12.9设V是数域K上的n维线性空间,又设W也是K上的一个线性空间。 从 x…xV 到W的一个多线性映射f如果满足如下条件 f(aaaa)=0(i=1,2r-1) (即第i,i+1两个变元取V内同一个向量a1),则称f为一个r重交错映射。 12.3.2r重交错映射的三条性质
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.2 C,R,Q 上多项式的因式分解 9.2.2 Q[ ] x 内多项式的因式分解
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
首页
上页
679
680
681
682
683
684
685
686
下页
末页
热门关键字
工程控制工程]
河北工程大学
网络管理
行政理论与方法
工程控制工程
东华大学
西南民族大学
武汉大学
铁碳合金
水质分析
实验原理
生物信息
结构式
教育过程
交互
华侨大学
工程地质
福利经济学
福建医科大学
东北大学
FLASH动画
《线路设计》
“电路原理”
《政策分析》
基础数学
基本数据
混凝土结构设计
化工原理
概念设计
概率与数理分析
福建农林大学
电磁
成都大学
测试设计]
病害
《旅游管理》
《网页设计》
《地理》
c语言课程设计
MATLAB环境与应用
搜索一下,找到相关课件或文库资源
6903
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有