点击切换搜索课件文库搜索结果(13527)
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:981.5KB 文档页数:33
方向导数与梯度 实例:一块长方形的金属板,四个顶点的坐标是 1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点?
文档格式:PPT 文档大小:444.5KB 文档页数:25
定积分在物理学中的应用 前面我们已经介绍了定积分在几何方 面的应用,我们看到,在利用定积分解决几 何上诸如平面图形的面积、平面曲线的弧长、 旋转体的体积等问题时,关键在于写出所求 量的微元
文档格式:PPT 文档大小:860KB 文档页数:37
定积分的几何应用 一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由[a,b] 上连续的两条曲线y=f(x)与y=g(x) (f(x)≥g(x)及两条直线x=ax=b所围成 在[a,b上任取典型小区间[xx+dx 与它相对应的小曲边梯形的面积为局部量dA
文档格式:PPT 文档大小:562.5KB 文档页数:29
其它展开 一、周期为2L的周期函数展开成 Fourier级数 前面我们所讨论的都是以2为周期的函数 展开成 Fourier级数,但在科技应用中所遇到的 周期函数大都是以T为周期,因此我们需要讨论 如何把周期为T=2l的函数展开为 Fourier级数 若f(t)是以T=2l为周期的函数,在[-l,l) 上满足 Dirichlet条件
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:451KB 文档页数:27
前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:356.5KB 文档页数:23
分部积分法 前面我们在复合函数微分法的基 础上,得到了换元积分法。换元积分 法是积分的一种基本方法。本节我们 将介绍另一种基本积分方法分部 积分法,它是两个函数乘积的微分法 则的逆转
文档格式:PPT 文档大小:1.1MB 文档页数:47
直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法换元积分法和分部积分法 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的 积分法—换元积分法。通常根据换元的先后 把换元法分成第一类换元和第二类换元
首页上页692693694695696697698699下页末页
热门关键字
搜索一下,找到相关课件或文库资源 13527 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有