点击切换搜索课件文库搜索结果(7108)
文档格式:PDF 文档大小:859.37KB 文档页数:14
谷歌的人工智能系统(AlphaGo)在围棋领域取得了一系列成功,使得深度强化学习得到越来越多的关注。深度强化学习融合了深度学习对复杂环境的感知能力和强化学习对复杂情景的决策能力。而自然语言处理过程中有着数量巨大的词汇或者语句需要表征,并且在对话系统、机器翻译和图像描述等文本生成任务中存在大量难以建模的决策问题。这使得深度强化学习在自然语言处理的文本生成任务中能够发挥重要的作用,帮助改进现有的模型结构或者训练机制,并且已经取得了很多显著的成果。为此,本文系统阐述深度强化学习应用在不同的文本生成任务中的一些主要方法,梳理其发展的轨迹,分析算法特点。最后,展望深度强化学习与自然语言处理任务融合的前景和挑战
文档格式:PDF 文档大小:2.36MB 文档页数:11
深度神经网络近年在计算机视觉以及自然语言处理等任务上不断刷新已有最好性能,已经成为最受关注的研究方向.深度网络模型虽然性能显著,但由于参数量巨大、存储成本与计算成本过高,仍然难以部署到硬件受限的嵌入式或移动设备上.相关研究发现,基于卷积神经网络的深度模型本身存在参数冗余,模型中存在对最终结果无用的参数,这为深度网络模型压缩提供了理论支持.因此,如何在保证模型精度条件下降低模型大小已经成为热点问题.本文对国内外学者近几年在模型压缩方面所取得的成果与进展进行了分类归纳并对其优缺点进行评价,并探讨了模型压缩目前存在的问题以及未来的发展方向
文档格式:PDF 文档大小:6.05MB 文档页数:11
作为磨矿过程的主要生产质量指标, 磨矿粒度是实现磨矿过程闭环优化控制的关键.将磨矿粒度控制在一定范围内能够提高选别作业的精矿品位和有用矿物的回收率, 并减少有用矿物的金属流失.由于经济和技术上的限制, 磨矿粒度的实时测量难以实现.因此, 磨矿粒度的在线估计显得尤为重要.然而, 目前我国所处理的铁矿石大多数为性质不稳定的赤铁矿, 其矿浆颗粒存在磁团聚现象, 所采集的数据存在大量异常值, 使得利用数据建立的磨矿粒度模型存在较大误差.同时, 传统前馈神经网络在磨矿粒度数据建模过程中存在收敛速度慢、易于陷入局部最小值等缺点, 且单一模型泛化性能较差, 现有的集成学习在异常值干扰下性能严重下降.因此, 本文在改进的随机向量函数链接网络(random vector functional link networks, RVFLN)的基础上, 将Bagging算法与自适应加权数据融合技术相结合, 提出一种基于鲁棒随机向量函数链接网络的集成建模方法, 用于磨矿粒度集成建模.所提方法首先通过基准回归问题进行了实验研究, 然后采用磨矿工业实际数据进行验证, 表明其有效性
文档格式:PDF 文档大小:0.99MB 文档页数:9
多聚焦图像融合是计算机视觉领域中的一个重要分支,旨在使用图像处理技术将同一场景下的聚焦不同目标的多张图像中各自的清晰区域进行融合,最终获得全清晰图像。随着以深度学习为代表的机器学习理论的突破,卷积神经网络被广泛应用于多聚焦图像融合领域,但大多数方法仅关注网络结构的改进,而使用简单的两两串行融合方式,降低了多图融合的效率,并且在融合过程中存在的失焦扩散效应也严重影响了融合结果的质量。针对上述问题,在显微成像分析的应用场景下,提出了一种最大特征图空间频率融合策略,通过在基于无监督学习的卷积神经网络中增加后处理模块,规避了两两串行融合中冗余的特征提取过程,实验证明该策略显著提高了多张图像的多聚焦图像融合效率。并且提出了一种矫正策略,在保证融合效率的情况下可有效缓解失焦扩散效应对融合图像质量的影响
文档格式:PDF 文档大小:770.77KB 文档页数:8
研制了一种无机材料构成的验电标识,放置在导线周围,通过电场驱动电子的运动,促进载流子复合,进而使材料发光,从而判断带电情况,其作为验电标识使用非常便捷.选取了氮化镓GaN材料进行研究,以GaN、InGaN等材料为基础,通过溶胶凝胶法、气相外延等方法制备接触层、基片层、材料层等结构,进而获得了验电标识,该验电标识的发光层是具有多量子肼结构的纳米棒阵列.然后对其进行了电学光学性能参数测试,获得了有关特性曲线,通过Ansoft-maxwell有限元软件进行仿真,分析材料在特高压输电线路周围的电场分布,通过试验分析验电标识发光所需求的电磁环境.最后模拟导线现场进行测试.研究表明,该低场致发光特性的验电标识具有发光功耗低,发光明显等优点,其处于所在区域的电场强度达到1.2×106V·m-1以上时,可激发发光,此时所注入电流约为1.1 mA.通过仿真和试验分析可知带电特高压输电线路周围的空间电场强度满足验电标识发光指示的要求,同时空间杂散电流和材料本身的电容效应提供注入电流.该验电标识通过材料本身发光特性来指示带电状态,安装在距离特高压导线轴线13 cm及以内的范围即可实现验电,通过封装具有较好的耐候性能,同时避免了复杂的电路装置验电存在易受电磁干扰,可靠性差等问题
文档格式:PDF 文档大小:802.84KB 文档页数:15
同步定位与地图构建技术(SLAM)是当前机器人领域的重要研究热点,传统的SLAM技术虽然在实时性方面已经达到较高的水平,但在定位精度和鲁棒性等方面还存在较大缺陷,所构建的环境地图虽然一定程度上满足了机器人的定位需要,但不足以支撑机器人自主完成导航、避障等任务,交互性能不足。随着深度学习技术的发展,利用深度学习方法提取环境语义信息,并与SLAM技术结合,越来越受到学者的关注。本文综述了环境语义信息应用到同步定位与地图构建领域的最新研究进展,重点介绍和总结了语义信息与传统视觉SLAM在系统定位和地图构建方面结合的突出研究成果,并对传统视觉SLAM算法与语义SLAM算法做了深入的对比研究。最后,展望了语义SLAM研究的发展方向
文档格式:PDF 文档大小:5.36MB 文档页数:8
首先介绍了传统的编队控制方法的定义、特点和常用方法及优缺点,并将传统编队控制时代定义为前编队控制时代.随着多智能体技术的发展,将多智能体技术引入到编队控制问题中,诞生了众多新的研究成果,称为后编队控制时代.后编队控制时代以多智能体技术为基础,随着通信技术、计算机技术、人工智能技术的发展而逐渐壮大起来,并受到了学者的广泛关注.前编队控制时代强调多机器人通过编队协作完成单个机器人无法实现的任务,提高任务完成效率且缩短任务完成时间.后编队控制时代则是在前编队控制时代的基础上,更强调低成本、同步性和协同性,但却不那么重视每个个体的任务分工,甚至是按照规则自由分配任务,不再有“不可替代冶的个体存在.最后给出了研究编队控制问题的基本思路和目前尚待解决的关键问题
文档格式:PDF 文档大小:1.21MB 文档页数:9
随着无人工厂、智能安监等技术在制造业领域的深入应用,以视觉识别预警系统为代表的复杂环境下动态识别技术成为智能工业领域的重要研究内容之一。在本文所述的工业级视觉识别预警系统中,操作人员头发区域由于其具有移动形态非规则性、运动无规律性的特点,在动态图像中的实时分割较为困难。针对此问题,提出一种基于SiamMask模型的时空预测移动目标跟踪算法。该算法将基于PyTorch深度学习框架的SiamMask单目标跟踪算法与ROI检测及STC时空上下文预测算法相融合,根据目标时空关系的在线学习,预测新的目标位置并对SiamMask模型进行算法校正,实现视频序列中的目标快速识别。实验结果表明,所提出的算法能够克服环境干扰、目标遮挡对跟踪效果的影响,将目标跟踪误识别率降低至0.156%。该算法计算时间成本为每秒30帧,比改进前的SiamMask模型帧率每秒提高3.2帧,算法效率提高11.94%。该算法达到视觉识别预警系统准确性、实时性的要求,对移动目标识别算法模型的复杂环境应用具有借鉴意义
文档格式:PDF 文档大小:723.23KB 文档页数:9
网络环境下的恶意软件严重威胁着工控系统的安全,随着目前恶意软件变种的逐渐增多,给工控系统恶意软件的检测和安全防护带来了巨大的挑战。现有的检测方法存在着自适应检测识别的智能化程度不高等局限性。针对此问题,围绕威胁工控系统网络安全的恶意软件对象,本文通过结合利用强化学习这一高级的机器学习算法,设计了一个检测应用方法框架。在实现过程中,根据恶意软件行为检测的实际需求,充分结合强化学习的序列决策和动态反馈学习等智能特征,详细讨论并设计了其中的特征提取网络、策略网络和分类网络等关键应用模块。基于恶意软件实际测试数据集进行的应用实验验证了本文方法的有效性,可为一般恶意软件行为检测提供一种智能化的决策辅助手段
文档格式:PDF 文档大小:836.01KB 文档页数:14
人工智能特别是近几年深度学习的飞速发展,深刻的影响着军事领域,并赋予现代战争智能性、交叉性和破坏性的新特点。要想在军事对抗中取胜,不仅需要机器智能,同样需要人类智慧,能在军事作战中达到人机高度协同,是实现人与机器取长补短的重要途径,也是在愈发复杂的战争形势中取得胜利的关键。本文将军事对抗中人工智能的应用作为切入点,罗列了代表性国家在军事领域对人工智能的重视程度,从对抗策略和物联网三层架构两大角度对发展现状进行总结,同时指出在目前军事领域使用人工智能存在的不足,对人机融合智能在军事对抗中的发展趋势进行分析,并给出可能实现的技术方案,对未来的研究方向作出展望。如何实现高度的人机融合,从而获得“1+1>2”的良好效果,是人工智能在军事对抗中的下一步研究工作
首页上页698699700701702703704705下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7108 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有