点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:1.32MB 文档页数:10
《工程科学学报》:一类离散动态系统基于事件的迭代神经控制
文档格式:PDF 文档大小:558.49KB 文档页数:11
《工程科学学报》:基于深度神经网络的点击率预测模型
文档格式:PDF 文档大小:1.28MB 文档页数:11
《工程科学学报》:一种基于卷积神经网络的CSI指纹室内定位方法
文档格式:PDF 文档大小:1.32MB 文档页数:10
《工程科学学报》:一类离散动态系统基于事件的迭代神经控制
文档格式:PDF 文档大小:1.26MB 文档页数:10
融合手工特征和深度特征,提出了一种集成超限学习机心跳分类方法。手工提取的特征明确地表征了心电信号的特定特性,如相邻心跳时间间隔反映了心跳信号的时域特性,小波系数反映了心跳信号的时频特性。同时设计了一维卷积神经网络对心跳信号特征进行自动提取。基于超限学习机(Extreme leaning machine,ELM),将上述特征融合进行心跳分类。由于ELM初始参数的随机给定可能导致其性能不稳定,进一步提出了一种基于袋装(Bagging)策略的多个ELM集成方法,使分类结果更加稳定且模型泛化能力更强。利用麻省理工心律失常公开数据集对所提方法进行了验证,分类准确率达到了99.02%,实验结果也表明基于融合特征的分类准确率高于基于单独特征的分类准确率
文档格式:PDF 文档大小:464.04KB 文档页数:7
通过低氧实验提出一种快速识别人体低氧状态的方法.通过搭建深层神经网络训练实验数据识别氧气体积分数(16%~21%)与人体可耐受极端低氧气体积分数(15.5%~16%)条件下光电容积脉搏波(photoplethysmography, PPG)信号, 获得人体生理状态的模式识别网络.经测试该网络的识别正确率可达92.8%.利用混淆矩阵及接受者操作性能(receiver operating characteristic, ROC)曲线分析, 混淆矩阵的训练集、验证集、测试集、全集识别正确率分别达到97.9%、94.8%、92.8%和96.3%, AUC (area under curve)值接近1, 认为该网络分类性能优良, 并且可在4 s内完成整个识别过程
文档格式:PDF 文档大小:4.6MB 文档页数:9
分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义
文档格式:PDF 文档大小:1.43MB 文档页数:9
高质量睡眠与儿童的身体发育、认知功能、学习和注意力密切相关,由于儿童睡眠障碍的早期症状不明显,需要进行长期监测,因此急需找到一种适用于儿童睡眠监测,且能够提前预防和诊断此类疾病的方法。多导睡眠图(Polysomnography,PSG)是临床指南推荐的睡眠障碍基本检测方法,通过观察PSG各睡眠期间的变化和规律,对睡眠质量评估和睡眠障碍识别具有基础作用。本文对儿童睡眠分期进行了研究,利用多导睡眠图记录的单通道脑电信号,在Alexnet的基础上,用一维卷积代替二维卷积,提出一种1D-CNN结构,由5个卷积层、3个池化层和3个全连接层组成,并在1D-CNN中添加了批量归一化层(Batch normalization layer),保持卷积核的大小保持不变。针对数据集少的情况,采用了重叠的方法对数据集进行了扩充。实验结果表明,该模型儿童睡眠分期的准确率为84.3%。通过北京市儿童医院的PSG数据获得的归一化混淆矩阵,可以看出,Wake、N2、N3和REM期睡眠的分类性能很好。对于N1期睡眠,存在将N1期睡眠被误分类为Wake、N2和REM期睡眠的情况,因此以后的工作应重点提升N1期睡眠的准确性。总体而言,对于基于带有睡眠阶段标记的单通道EEG的自动睡眠分期,本文提出的1D-CNN模型可以实现针对于儿童的自动睡眠分期。在未来的工作中,仍需要研究开发更适合于儿童的睡眠分期策略,在更大数据量的基础上进行实验
文档格式:PDF 文档大小:1.18MB 文档页数:9
《工程科学学报》:基于深度循环神经网络的协作机器人动力学误差补偿
文档格式:PDF 文档大小:729.77KB 文档页数:8
医疗实体识别是电子病历文本信息抽取的基本任务。针对中文电子病历文本复合实体较多、实体长度较长、句子成分缺失严重、实体边界不清的语言特点以及标注语料难以获取的现状,提出了一种基于领域词典和条件随机场(CRF)的双层标注模型。该模型通过对外部资源的统计分析构建医疗领域词典,再结合条件随机场,进行了两次不同粒度的标注,将领域词典识别的准确性和机器学习的自动性融为一体,从中文电子病历文本中识别出疾病、症状、药品、操作四类医疗实体。该模型在测试数据中的宏精确率为96.7%、宏召回率为97.7%、宏F1值为97.2%。同时对比分析了采用注意力机制的深度神经网络的识别效果,因受到领域数据集大小的限制,在该测试数据集中后者表现不佳。实验结果表明了该双层标注模型对中文医疗实体识别的高效性
首页上页6869707172737475下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有