点击切换搜索课件文库搜索结果(7208)
文档格式:PPT 文档大小:41.5KB 文档页数:1
例1在自由落体运动中,设物体下落的时间为t,下落 的距离为s,开始下落的时刻t=0,落地的时刻t=T,则s与t之 间的函数关系是
文档格式:PPT 文档大小:43.5KB 文档页数:1
例如,设y=(m)= arcsin u=g(x)=2小x2.因为 y=f()的定义域为[-1,1], l=g(x)在D=[-1,-[,上有定义
文档格式:PPT 文档大小:41.5KB 文档页数:1
定理2(收敛数列的有界性) 如果数列{xn}收敛,那么数列{xn}一定有界 证明设数列{xn}收敛于a 根据数列极限的定义,Vε=1,3N∈N+,当n>N时,有
文档格式:PPT 文档大小:43KB 文档页数:1
定理3(收敛数列与其子数列间的关系) 如果数列{xn}收敛于a,那么它的任一子数列也收敛, 且极限也是a 证明设数列{xn}是数列{xn}的任一子数列. 因为数列{xn}收敛于a,所以ve>0,3nen+,当n>时, 有xn-ak. 取K=N,则当kK时,nK=N.于是xn-ak
文档格式:PPT 文档大小:48.5KB 文档页数:1
定理6(复合函数的极限运算法则) 设函数y=fg(x)是由函数y=f(u)与函数u=g(x)复合而成, fg(x)]在点x的某去心邻域内有定义.若g(x)→u(x→x) f(u)→A(u→u),且在x的某去心邻域内g(x)u,则
文档格式:PPT 文档大小:46.5KB 文档页数:1
定理3 设函数y=fg(x)由函数y=f(u)与函数u=g(x)复合而成, U(x)CDfg.若limg(x)=u,而函数y=f(u)在u连续,则
文档格式:PPT 文档大小:60.5KB 文档页数:1
定理4(介值定理) 设函数f(x)在闭区间[a,b]上连续,且f(a)(b),那么,对于 f(a)与f(b)之间的任意一个数C,在开区间(a,b)内至少有一点5 使得=C
文档格式:PPT 文档大小:58.5KB 文档页数:2
设P(x,y)及Q(x,y)在单连通域G内具有一阶连续偏导数, 则P(x,y)dx+(x,y)dy在G内为某一函数u(x,y)的全微分的充分 必要条件是等式在G内恒成立
文档格式:PPT 文档大小:60KB 文档页数:1
如果流体流过平面上面积为A的一个闭区域,且流体 在这闭区域上各点处的流速为(常向量)v,又设n为该平面 的单位法向量,那么在单位时间内流过这闭区域的流体 组成一个底面积为A、斜高为|的斜柱体
文档格式:PPT 文档大小:44.5KB 文档页数:1
简要证明仅就uvn(n=1,2,…)的情形证明 设级数v收敛,其和为,则级数un的部分和 S=u1+u2++unv1+v2+…+vno(n=1,2,), 即部分和数列{sn}有界.因此级数un收敛 反之,若级数un发散,则级数∑v,必发散.这是因为如果 级数∑v收敛,由已证结论,级数un也收敛,矛盾
首页上页708709710711712713714715下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7208 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有