点击切换搜索课件文库搜索结果(7629)
文档格式:PPT 文档大小:60.5KB 文档页数:1
定理4(介值定理) 设函数f(x)在闭区间[a,b]上连续,且f(a)(b),那么,对于 f(a)与f(b)之间的任意一个数C,在开区间(a,b)内至少有一点5 使得=C
文档格式:PPT 文档大小:46.5KB 文档页数:1
定理3 设函数y=fg(x)由函数y=f(u)与函数u=g(x)复合而成, U(x)CDfg.若limg(x)=u,而函数y=f(u)在u连续,则
文档格式:PPT 文档大小:48.5KB 文档页数:1
定理6(复合函数的极限运算法则) 设函数y=fg(x)是由函数y=f(u)与函数u=g(x)复合而成, fg(x)]在点x的某去心邻域内有定义.若g(x)→u(x→x) f(u)→A(u→u),且在x的某去心邻域内g(x)u,则
文档格式:PPT 文档大小:43KB 文档页数:1
定理3(收敛数列与其子数列间的关系) 如果数列{xn}收敛于a,那么它的任一子数列也收敛, 且极限也是a 证明设数列{xn}是数列{xn}的任一子数列. 因为数列{xn}收敛于a,所以ve>0,3nen+,当n>时, 有xn-ak. 取K=N,则当kK时,nK=N.于是xn-ak
文档格式:PPT 文档大小:41.5KB 文档页数:1
定理2(收敛数列的有界性) 如果数列{xn}收敛,那么数列{xn}一定有界 证明设数列{xn}收敛于a 根据数列极限的定义,Vε=1,3N∈N+,当n>N时,有
文档格式:PPT 文档大小:41.5KB 文档页数:1
例1在自由落体运动中,设物体下落的时间为t,下落 的距离为s,开始下落的时刻t=0,落地的时刻t=T,则s与t之 间的函数关系是
文档格式:PDF 文档大小:206.48KB 文档页数:47
矩阵 矩阵的秩及其求法 1.利用定义求矩阵的秩 利用定义求矩阵的秩就是利用矩阵的子式或行列式是否为零来确定矩阵的秩. 例1设A=(a1)nxn为非零矩阵,A1为a的代数余子式,若an=A,求r(A). 解因为A≠0,所以至少有一个元素an≠0;将|A|按第i行展开,有
文档格式:PDF 文档大小:67.73KB 文档页数:4
向量空间 一、向量空间及其子空间 1定义:设V是n维向量的非空集合,如果V对于向量加法及数乘两种运算封闭,即:
文档格式:DOC 文档大小:363KB 文档页数:25
特征值 一、基本要求 1.理解矩阵的特征值、特征向量的概念并掌握其求法; 2.了解相似矩阵的概念、性质及矩阵对角化的充要条件,会化矩阵为相似对角形 二、内容提要 1.特征值与特征向量 设A为n阶方阵,a为n维非零列向量,为一个数,使得则称为A的一个特征值,a为A对应于的一个特征向量 2.特征向量的性质 (1)对应于不同特征值的特征向量是线性无关的 (2)同一特征值的特征向量a1,a2,…,am的任意非零线性组合
文档格式:DOC 文档大小:544.5KB 文档页数:19
设P是数域,是一个文字,作多项式环P,一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵在这一章讨论λ矩阵的一些性 质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在λ矩阵中也包括以数为元素 的矩阵.为了与-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩 阵.以下用A(),B()…等表示-矩阵 我们知道,P]中的元素可以作加、减、乘三种运算
首页上页729730731732733734735736下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7629 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有