点击切换搜索课件文库搜索结果(14405)
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E, 则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数 运算
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:163KB 文档页数:3
12.2.3一元多项式的判别式的定义 给定K[x]内一个n次多项式 F(x)=ax+axn-+…+an(a≠0) 设a1,a2,…an是它的n个根,令 称其为F(x)的判别式。显然,F(x)有重根其充分必要条件是D(F)=0 现在考察n元式
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
文档格式:PPT 文档大小:780KB 文档页数:16
向量空间有两种运算:加法和数量乘法,合起来成为线性 运算。因此向量空间也可称为线性空间。向量空间元素之间的最基本的关系就体现在运算上即所谓线性关系上。因此讨论向量之间的线性关系在研究向量空间时起着极为重要的作用。本节仅限于在F中进行讨论
文档格式:PPT 文档大小:456KB 文档页数:16
上一节我们定义了向量组的秩,如果把矩阵的每一行看成 一个向量,那么矩阵就是由这些行向量组成的。同样,如果把 矩阵的每一列看成一个向量,则矩阵也可以看作是由这些列向 量组成的。 定义3.4.1所谓矩阵的行秩是指矩阵的行向量所组成的 向量组的秩,矩阵的列秩是由矩阵列向量所称向量组的秩
文档格式:PPT 文档大小:310.5KB 文档页数:14
定理3.5.1(线性方程组有解的判别定理): 线性方程组(3.5.1)有解的充要条件是它的 系数矩阵A与增广矩阵A有相同的秩
首页上页745746747748749750751752下页末页
热门关键字
搜索一下,找到相关课件或文库资源 14405 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有