网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(7541)
《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 多维随机变量及其分布(3.3)随机变量的独立性
文档格式:PPS 文档大小:298.5KB 文档页数:19
3.3随机变量的独立性 将事件独立性推广到r.v. 两个rv的相互独立性 定义设(X,Y)为二维r.v.若对任何 实数x,y都有 则称r.v.X和Y相互独立
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.7 线性空间关于一个子空间的同余关系 4.2.8 商空间的定义,定义的合理性以及商空间的基的选取
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系。 把全部等价类组成的集合(一个等价类视为等价类集合中的一个元素)记为V/M, V/M中的元素形如 a+m={a+luM}, 我们称a+M为一个模M的同余类,而将等价类中的任一元素称为等价类的代表元素。 命题同余类满足如下一些性质:
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.2 线性映射的运算的定义与性质 4.3.3 线性映射在一组基下的矩阵的定义
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.1 线性空间上的线性函数的定义 5.1.2 双线性函数
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.4 单变量有理函数域
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
北京大学:《高等代数》课程教学资源(讲义)数学科学学院高等代数(I)期末考试题
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}. 证明:对于任意的g(x)∈x],有g(a)∈a];又对于任意的B,ya,有 Bry Qa 3.(本题5分)接上题.证明:若B∈Qa],B≠0,则存在∈a],使得y=1. 4.(本题15分)找出f(x)的一个sturm序列.判断f(x)有几个实根. 5.(本题10分)求下面三阶方阵在有理数域Q上的最小多项式:
西北工业大学:《线性代数》课程教学资源(讲稿)第二章 矩阵及其运算(2.1-2.2)
文档格式:DOC 文档大小:281.5KB 文档页数:7
第二章矩阵及其运算 2.1矩阵 1.方程组由其系数和右端项确定 a21a22 b : + x2 ++ =bm am2 ammb 2.矩阵设mn个数a(i=1,2,m;j=1,2n)排成m行n列的数表
西北工业大学:《线性代数》课程教学资源(讲稿)第四章 向量组的线性相关性(4-3)向量组的秩与最大无关组
文档格式:DOC 文档大小:327KB 文档页数:7
4.3向量组的秩与最大无关组 1.向量组的秩:设向量组为T,若 (1)在T中有r个向量a1,a2,…,a,线性无关; (2)在T中有r+1个向量线性相关(如果有r+1个向量的话) 称a1,a2,…,a,为向量组为T的一个最大线性无关组, 称r为向量组T的秩,记作:秩(T)=r 注](1)向量组中的向量都是零向量时,其秩为0 (2)秩(T)=r时,T中任意r个线性无关的向量都是T的一个 最大无关组
西北工业大学:《线性代数》课程教学资源(讲稿)第四章 向量组的线性相关性(4-5)线性方程组解的结构
文档格式:DOC 文档大小:308.5KB 文档页数:7
4.5线性方程组解的结构 b 齐次方程组Ax=0 非齐次方程组Ax=b(b≠0) 结论:(1)[4b]→[d,Ax=b与Cx=d同解 (2)Ax=0有非零解兮rank4
西北工业大学:《线性代数》课程教学资源(讲稿)复习题
文档格式:DOC 文档大小:266.5KB 文档页数:6
对应特征值礼=-1只有1个线性无关的特征向量,而特征方程的基础解系为5,全体特征向量为x=k1l1(k1≠0)例9设方阵A的特征值A1≠2,对应的特征向量分别为x1,x2,证明: (1)x1-x2不是A的特征向量;
首页
上页
746
747
748
749
750
751
752
753
下页
末页
热门关键字
微观分析
出版学
数子电子
初等数学
生产力
长江]
《基础生物学》
语言方面的
网络开发与应用
上课
上海电力大学
构造分析]
《医学微生物学》
C编程
投资风险管理
世新大学
设备工程
跨国管理
动画]
电声
电器]
编译]
《道路勘测设计》]
CET考试
autoCAD
b2
进程管理
家庭社会学理论
激光原理与技术
基础医学院]
机械制造设备
环境电子学院
化学反应
化工原理
工程振动的试验与分析
法律社会科学
电影]
电路学]
报刊
Linux基础和应用
搜索一下,找到相关课件或文库资源
7541
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有