点击切换搜索课件文库搜索结果(9041)
文档格式:PPT 文档大小:1.37MB 文档页数:40
第二类曲线积分 设L 为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L 为定向的)。一个质点在力 F(x, y,z) = P(x, y,z)i + Q(x, y,z) j + R(x, y,z)k 的作用下沿L 从 A移动到B , 我们要计算F(x, y,z)所作的 功
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PPT 文档大小:520KB 文档页数:13
定义12.3.1设DcR是区域。若连结D中任意两点的线段都完 全属于D,即对于任意两点x,x1∈D和一切λ∈[0,1],恒有 x+(x1-xo)∈D, 则称D为凸区域
文档格式:PPT 文档大小:1.67MB 文档页数:56
偏导数 定义 12.1.1 设 D 2 R 为开集, z f x y x y =  ( , ), ( , ) D 是定义在 D 上的二元函数,( , ) 0 0 x y D 为一定点
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
文档格式:PDF 文档大小:170.84KB 文档页数:21
数项级数 设 1 x , 2 x ,…, n x ,…是无穷可列个实数,我们称它们的“和” 1 x + 2 x +\+ xn +\ 为无穷数项级数(简称级数),记为∑ ∞ n=1 n x ,其中 n x 称为级数的通项或一 般项
文档格式:PDF 文档大小:183.23KB 文档页数:20
带 Peano余项的Tay1or公式 定理5.3.1(带 Peano余项的 Taylor公式)设f(x)在x处有n阶 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立
文档格式:PDF 文档大小:196.01KB 文档页数:20
复合函数求导法则 定理4.4.1 (复合函数求导法则) 设函数u gx = ( )在 x x = 0可导, 函数 y fu = ( )在u u gx = 0 0 = ( )处可导,则复合函数 y f gx = ( ( ))在 x x = 0可 导,且有 [ ( ))] ( ) ) f gx f u g x x x ( ′ = ′ ′( = 0 0 0 = f gx g x ′( )) ) ( ′( 0 0
文档格式:PDF 文档大小:356.32KB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f x( ) 在点 x0的某个邻域中有定义,并且成立 lim x x → 0 f x( ) = f x( ) 0 , 则称函数 f x( ) 在点 x0 连续,而称 x0是函数 f x( ) 的连续点。 “函数 f x( ) 在点 x0 连续”的符号表述(或称“ε −δ ”表述):
文档格式:PDF 文档大小:268.56KB 文档页数:32
Fourier 级数的分析性质 为简单起见,假定 f x( )的周期为2π。 首先,利用 Riemann 引理可以直接得出 定理 16.3.1 设 f x( )在[−π,π]上可积或绝对可积,则对于 f x( )的 Fourier 系数an与bn,有
首页上页756757758759760761762763下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9041 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有