点击切换搜索课件文库搜索结果(8405)
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
文档格式:DOC 文档大小:433.5KB 文档页数:5
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
文档格式:DOC 文档大小:97.5KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.2 一般线性变换的 Jordan标准型(2/2)
文档格式:DOC 文档大小:82KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.1 幂零线性变换的 Jordan 标准型
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:DOC 文档大小:127.5KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)对称变换
文档格式:DOC 文档大小:192KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式 12 2 为方阵的顺序主子式。 定理设f是实二次型,则下述四条等价:
首页上页789790791792793794795796下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8405 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有