Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft(called the Phugoid mode) using a very simple balance between the kinetic and potential energies Consider an aircraft in steady, level fight with speed Uo and height ho
Spring 2003 1661AC22 Longitudinal Dynamics For notational simplicity, let X=Fn, Y= Fu, and Z= F aF Longitudinal equations(1-15 )can be rewritten as mi=X+X2- mg cos(0+△X
LECTURE+ 12 RIGID BODY OYNAAICS 工 MPLICAT IONsF GENERAL ROTATIONAL OYWMICS EJLER's EQUATIN of MOTION TORQVE FREE SPECIAL CASES. PRIMARY LESSONS: 30 ROTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'S E.o.M. PROVIOE STARTING POINT FoR ALL+ OYwAmIcs SOLUTINS To EvlER's EQuATIONS ARE COMPLEX BUT WE CAN OEVE LOP GooO GEOMETRIC VISUALIZATION TOOLS
ATTITUDE MOTION -TORQVE FeEE MANE 0ISCUSSED THE ROTATIONAL MOTION FRDn 1 ERSPECTvE。FE”6o0 FRAME 一NE0T0F1A0 A WAy TO CONNECT THE MOTION To THE INEATIAL FRAME So WE CAN DESCRI BE THE ACTUAL MOTION TYPICALLY DoNE 6y DESC RI BING MOTION oF NEHICLE ABoVT THE
Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive direction
Spring 2003 Example Given: Catapult rotating at a constant rate(frictionless, in the horizontal plane) Find the eom of the particle as it leaves the tube