Fermentation and Biochemical Engineering Handbook microorganisms, mammalian cells, plant cells, and tissue. It is our sincere hope that the reader will find this chapter helpful in determining the best conditions for cultivation and the collection of scale-up data. Hopehlly, this knowledge will, in turn, facilitate the transformation of worthwhle research
3.0 BIOREACTORS FOR PLANT CELL TISSUE AND ORGAN CULTURES fly Shinsaku Takayama) 3.1 Background of the Technique-Historical Overview HaberlandtL'] first reported plant cell, tissue, and organ cultures in 1902. He separated plant tissues and attempted to grow them in a simple nutrient medium. He was able to maintain these cells in a culture medium for
2.1 The Microbiological Laboratories Isolation of organisms for new products normally does not occur in laboratories associated with production cultures, however, production (microbiological) laboratories frequently do mutation and isolation work to produce strains with higher yields, to suppress a by-product, to reduce the formation of a surfactant, to change the physical properties of the broth to facilitate the product recovery
Specific nutritional requirements of microorganisms used in industrial fermentation processes are as complex and varied as the microorganisms in question. Not only are the types of microorganisms diverse (bacteria, molds and yeast, normally), but the species and strains become very specific as to their requirements