点击切换搜索课件文库搜索结果(8482)
文档格式:PDF 文档大小:3.78MB 文档页数:96
4.1几个基本概念 4.2旋光性 4.3对映体和外消旋体 4.4 Fischer投影式 4.5构型标记 4.6含2个手性碳原子的化合物 4.7含手性碳原子的单环化合物 4.8不含手性碳原子的手性分子 4.9手性分子的形成和生物作用
文档格式:DOC 文档大小:29.5KB 文档页数:2
一、课程名称:数字电子技术(2) Digital Electronics Technology(2) 课程负责人:曾孝平 二、学时与学分:54+18学时,4学分 三、适用专业:自动化专业 四、课程教材:阎石编.数字电子技术基础(第四版).高教出版社,1998
文档格式:PPT 文档大小:1.15MB 文档页数:31
重积分的性质 性质1(线性性)设f和g都在区域Ω上可积,a,B为常数,则 af+Bg在上也可积,并且 (af+Bg)dv =a fdv+ gdv Ω 性质2(区域可加性)设区域Ω被分成两个内点不相交的区域 Q1和2,如果f在Q上可积,则f在21和2上都可积;反之,如 果f在Ω1和Q2上可积,则f也在上可积
文档格式:PPT 文档大小:631.5KB 文档页数:21
无穷大量 随着n的增大,通项的绝对值也无限地增大的数列称为无穷大 量,其严格的分析定义为: 定义2.3.1若对于任意给定的G>0,可以找到正整数N,使得 当n>N时成立 >, 则称数列{xn}是无穷大量,记为 limx=∞
文档格式:PPT 文档大小:1.37MB 文档页数:46
在实际应用中,常常需要考察某种物理量(如温度,密度,电场 强度,力,速度等)在空间的分布和变化规律,从数学和物理上看这 就是场的概念。 设cR3是一个区域,若在时刻t,2中每一点(x,y,z)都有一个确 定的数值f(x,y,z,t)(或确定的向量值f(x,y,z)与它对应,就称函数 f(x,y,z,t)为2上的数量场(或向量场)
文档格式:PPT 文档大小:391KB 文档页数:14
外微分 设UcR为区域,f(,x2,xn)为U上的可微函数,则它的全微 分为 这可以理解为一个0形式作微分运算后成为1-形式
文档格式:PPT 文档大小:328KB 文档页数:11
8.1TK1640数控车床电气控制电路 8.1.1TK1640数控车床的组成 8.1.2TK1640数控车床的技术参数 8.2TK1640数控车床的电气控制电路 8.2.1电气原理图分析的方法与步骤 8.2.2TK1640数控车床电气控制电路分析
文档格式:PPT 文档大小:1.2MB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文档格式:PDF 文档大小:311.83KB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
首页上页819820821822823824825826下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8482 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有