点击切换搜索课件文库搜索结果(8616)
文档格式:DOC 文档大小:305KB 文档页数:7
第九讲罗比塔法则 阅读:第4章42pp89-95, 预习:第4章4.3:96-111 练习pp95-96习题42:1至6;7,单数小题;8,单数小题 作业pp95-96习题42:7,双数小题;8,双数小题;9;10. 重要通知 (1)第九周星期六下午在开放实验室进行微积分()小测验: 测验内容为罗比塔法则及以前的知识; 测验方式:计算机考试,时间一小时。 每班具体考试时间下周考前通知。 (2)请每位同学务必在下周星期二以前,到网上 (网址为:info. Mathe.edu.cn 阅读机考说明,并试做摸拟试卷。 4-2罗比塔(L' Hospitale)法则
文档格式:DOC 文档大小:578.5KB 文档页数:10
第十一讲台劳(Taylor)公式 阅读:第4章4.4,pp.113121 预习: 练习p1--122习题4.4:1至2;3(1)(3)5,(1) 作业pp121--122习题4.4:3,(4),(5),()5,(2) pp13:4章补充题:13;5;9;12;15,(3);17 机考安排:
文档格式:DOC 文档大小:697.5KB 文档页数:9
4-3三重积分的计算 4-3-1三重积分在直角坐标系下的计算 4-3-2三重积分在柱坐标系下的计算 4-3-3三重积分在球坐标系下的计算 4-3-4三重积分在一般坐标系下的计算 第十三讲三重积的计算 课后作业: 阅读:第四章第四节三重积分的计算pp114-123 预习 第五节曲面面积和曲面积分pp125-134
文档格式:DOC 文档大小:458KB 文档页数:7
第四章重积分 第五节含参变量的积分 4-5-1含参积分的概念及性质 4-5-2广义含参积分 第十四讲含参变量积分的概念与性质 课后作业: 阅读:第四章第二节:pp.102—107,、第三节:pp.109113 预习 第四节三重积分的计算pp.114—12 作业:习题2:pp.108-109:1,(3),(5),(6);2,(2),(3), 3(书上错写成2),(3),(4);4(书上错写成3),(2), (4);
文档格式:DOC 文档大小:467.5KB 文档页数:10
第五章不定积分 CThe indefinite integration 第十二讲原函数及不定积分 课后作业: 阅读:第五章51:pp124-125;5.2:pp125-129;53:pp131-132; 预习:第五章54:pp135-137;5.5:pp138-141;56:pp.143-149 练习pp129-131:习题52:1;3;4;7中的单号题;10:1 业PD13-134:习题53:1,234各题中的单号题;6; pp.129-131:习题52:2;5;6;7中的双号题;8;9;12 pp.133-134:习题53:1,2,3,4各题中的双号题;5;8;10;1l
文档格式:DOC 文档大小:783.5KB 文档页数:12
第十七讲曲线积分 课后作业: 阅读:第五章第一节:曲线积分pp.142-151 预习:第五章第二节:Gren公式pp.152--158 作业:习题1:p152:2;3;4;7;8;9;10. 补充题 1.计算下列第一类曲线积分 (1)[(x+y)dl其中C为以0O,O,A(1,O),BO,1)为顶点的三角形的三条边。 [(x0+y3)d,其中C为星形线:xaos+=asnt(0s2m) (3)[(x2+y2+z2)dl,其中C为螺线
文档格式:DOC 文档大小:440.5KB 文档页数:9
第五章向量分析 5-2 Green公式、平面有势场 5-2-1 Green公式 5-2-2第二型曲线积分与路径无关性 5-2-3势函数与有势场 第十八讲Gren公式、平面有势场 课后作业:
文档格式:DOC 文档大小:373KB 文档页数:7
第五章向量分析 第二十讲 Stokes公式 5-5-1 Stokes公式 5-5-2旋度及其物理意义 课后作业: 阅读:第五章第五节: Gauss公式和 Stokes公式pp.173--181 预习:第五章第六节:无源场和保守场pp.182-187 作业:习题5:pp181-182:11),(3),(5),(7);2;33);4,(1);5:6. 5-5 Stokes公式 本节专门讨论空间向量场 F(x,y, =)=X(x,y, =)i+Y(x, y, s)j+Z(x,y, =k 5-5-1 Stokes公式
文档格式:DOC 文档大小:475.5KB 文档页数:11
第五章向量分析 5-7微分形式介绍 第二十二讲微形形式介绍 课后作业: 阅读:第十三章13.7pp.278-290 预习:第十四章14-1pp.293304 作业题:p.290补充题1:4:58 5-7微分形式介绍 (一)微分形式问题的提出 我们已经学习过四个微积分的重要公式 Newton-Leibniz-公式∫df=f(b)-f(a) Green公式x+y
文档格式:DOC 文档大小:307.5KB 文档页数:6
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
首页上页844845846847848849850851下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8616 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有