where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
This lecture presents results describing the relation between existence of Lyapunov or storage functions and stability of dynamical systems 6.1 Stability of an equilibria
In particular, when o=0, this yields the definition of a Lyapunov function Finding, for a given supply rate, a valid storage function(or at least proving that one exists)is a major challenge in constructive analysis of nonlinear systems. The most com-
Definition A real-valued function V: X H R defined on state space X of a system with behavior set B and state r:B×[0,∞)→ X is called a Lyapunov function if tHv(t)=v(a(t))=v(a(z(), t)) is a non-increasing function of time for every z E B according to this definition, Lyapunov
he variable t is usually referred to as the\time Note the use of an integral form in the formal definition(2.2): it assumes that the function tHa(a(t), t)is integrable on T, but does not require =a(t)to be differentiable at any particular point, which turns out to be convenient for working with discontinuous