第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文档格式:DOC 文档大小:377.5KB 文档页数:8
第六章定积分 (The definite integration) 第十六讲定积分的计算方法 课后作业: 阅读:第六章6.4,6.5,6.6:pp16--193 预习:第七章7.1,7.2,7.3:pp9--210. 练习pp.182-184:习题6.4:1;2;3,7,8中的单数序号小题;11; 17;20 p.16-188习6.5:12;3,中的单数序号小题;4;6; 8;9;11;24;26;27 作业pp.182-184:习题6.4:3,中的双数序号小题;5;6; 7,(6),(8),(10);8,(2),(4);9;10;1516;18;21 1720
文档格式:DOC 文档大小:303.5KB 文档页数:6
教学内容及教学过程 3.2剪力图和弯矩图 dx2dx 推论: dQ(x) 线 1、q(x)=0 =0,Q(x)=常量 'd'Mx) dx2=q(x)=0,M(x)为一次函数 d(x)=常数,Q(x)为一次函数 dx 2、q(x)=常数,Mx)= 2=q(x)=常数,M(x)为二次函数 ) q(x)向下,q(x)<0,<0,曲线上凸 dx2 反之,则下凹