点击切换搜索课件文库搜索结果(76225)
文档格式:PDF 文档大小:158.42KB 文档页数:5
介绍绝对连续函数概念及性质,证明联系微分与积分的牛顿莱布尼兹公式
文档格式:PDF 文档大小:193.49KB 文档页数:7
本章将利用 Lebesgue积分的理论证明对一类更一般的函数成立相应的结果本章所讨论的 函数都是定义在区间上的实值函数(不取±∞为值).凡本章所涉及到的可测性,测度和几乎 处处等概念都是关于 Lebesgue测度空间(R,m(r),m)而言的
文档格式:PDF 文档大小:162.77KB 文档页数:4
设给定一个测度空间(X,,),C是可积函数类L(u)的一个子类.若对任意可积 函数f∈L(u)和>0,存在一个g∈C,使得f-gd<,则称可积函数可以用C 中的函数逼近
文档格式:PDF 文档大小:150.31KB 文档页数:4
本节讨论关于积分号下取极限的性质,即取极限和求积分交 换顺序的定理.内容包括三个重要的定理以及一些推论
文档格式:PDF 文档大小:201.83KB 文档页数:8
在引言中我们已经提到, Riemann积分在处理连续函数或者逐段连续函数时,在计算 些几何和物理的量时它是很有用的.但它也存在一些缺陷,使得 Riemann积分在处理分析数 学中的一些问题时显得不够有力.因此需要建立新的积分的理论二十世纪初, Lebesgue建 立了一种新的积分理论.新的积分理论消除了上述缺陷,并且包含了原有的 Riemann积分理 论.这就是本章将要介绍的 Lebesgue积分理论 由于现代数学的许多分支如概率论,泛函分析,群上调和分析等越来越多的用到一般 空间上的测度与积分理论,因此我们将在一般的测度空间上介绍积分理论
文档格式:PDF 文档大小:180.12KB 文档页数:6
可测函数列可以定义各种收敛性.本节讨论几乎处处收敛, 依测度收敛和几乎一致收敛.几种收敛性之间存在一些蕴涵关系通过本节 的学习,可以使学生对可测函数列的几种收敛性和相互关系有一个较全面的了解
文档格式:PDF 文档大小:220.19KB 文档页数:10
本节利用2.2中一般测度的构造方法,构造一个重要的测度, 即欧氏空间R上的Lebesgue测度 Lebesgue测度的建立,为定义 Lebesgue积 分打下基础
文档格式:PDF 文档大小:169.12KB 文档页数:5
们知道 Riemann积分的几何意义是曲边梯形的面积.为在欧氏空间空间R上推广 Riemann积分的理论,我们必须把象长度,面积和体积等概念推广到R”中的更一般的集上 去本章将要定义的R”上的 Lebesgue测度就是长度,面积和体积等概念推广
文档格式:PDF 文档大小:249.73KB 文档页数:11
对应的思想与方法贯穿本节的核心基数的概念可数 集的讨论都要用的一一对应的方法证明两个不同的集对等,从而具有相 同的基数,特别地,要证明一个集是可数集,有时需要一定的技巧,因而 具有一定的难度,通过较多的例题和习题,使学生逐步掌握其方法和技巧 映射在数学分析课程中我们对函数已经很熟悉.在数学分析中函数的定义域通常是 R\的子集,值域是实数集或者复数集.若将函数的定义域和值域换成一般的集,就得到映 射的概念
文档格式:PDF 文档大小:177.36KB 文档页数:6
集与集的运算是测度与积分理论的基础.本章先介绍集论的一些基本内容,包括 集与集的运算,可数集和基数,一些具有某些运算封闭性的集类如环与σ一代数等.然后介 绍R中的一些常见的点集
首页上页898899900901902903904905下页末页
热门关键字
搜索一下,找到相关课件或文库资源 76225 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有