点击切换搜索课件文库搜索结果(9104)
文档格式:DOC 文档大小:285KB 文档页数:5
第二章3线性方程组的理论课题 3.1.1齐次线性方程组的基础解系 对于齐次线性方程组 ax1+a12x2+…+anxn=0 Ja12x1+a22x2++ =0, ……… amx+am2x2+…+=0 令 (a1)(a1 a22 a1= a2,a2= ,…,an= am2/ amn 则上述方程组即为
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:DOC 文档大小:57KB 文档页数:2
第三章3-2n阶方阵的行列式(续) 3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式 = 命题按行列式的第i行展开,有 证明将第i行先后与第i-1,i-2,…,1行交换,再展开。 推论行列式按第j行展开,有a=a 2、范德蒙行列式 形如 111 |= a1a2…an an 的行列式称为范德蒙行列式
文档格式:DOC 文档大小:96.5KB 文档页数:2
第三章3-4行列式的完全展开式 3.4.1一些基本概念 定义给定n个互不相同的自然书,把它们按一定次序排列起来: ii2…in, 称为该n个自然数的一个排列。在上述排列中,如果有一个较大的自然竖排在一个较小的 自然数前面,则称为一个反序。一个排列中包含的反序的总数称为该排列的反序数。排列 …的反序数计作N(2n)。一个排列的反序数为奇数时,该排列称为奇排列
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合, 则称a1,a2,,an为V的一组基。 基即是V的一个极大线性无关部分组
文档格式:DOC 文档大小:204KB 文档页数:3
4.2.2子空间的交与和,生成元集 定义4.13设a1,a2,,a,∈V,则{ka1+k2a2++ka,k∈K,i=12}是V的 一个子空间,称为由a1,a2,,a,生成的子空间,记为(aa2,,a)易见,生成的子 空间的维数等于a1,a2,…,a的秩。 定义4.14子空间的交与和 设V1,V2为线性空间VK的子空间,定义 vnv2={ VEV2},称为子空间的交 V1+V2={v+v2v∈V1,v2∈V2},称为子空间的和。 命题4.9VNV2和V1+V2都是V的子空间
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系。 把全部等价类组成的集合(一个等价类视为等价类集合中的一个元素)记为V/M, V/M中的元素形如 a+m={a+luM}, 我们称a+M为一个模M的同余类,而将等价类中的任一元素称为等价类的代表元素。 命题同余类满足如下一些性质:
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
首页上页899900901902903904905906下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9104 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有