点击切换搜索课件文库搜索结果(9104)
文档格式:PDF 文档大小:91.56KB 文档页数:5
1.2多项式的整除性 定义2.1设f(x)g(x)∈[x],若有h(x)∈[x]使得 f(x)=g(x)h(x),则称g(x)整除f(x),也称g(x)是f(x)的 二一个因式,f(x)是g(x)的一个倍式,记为g(x)f(x)(否则 二记为g(x)十f(x))进一步,若还有0
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
文档格式:PDF 文档大小:96.51KB 文档页数:8
平余式定理 f(x除以x-c所得的余式等于f(c 证明因为x-c是一次多项式故由带余除法可知, 它除(x)所得的余式为常数r,而且,有q(x)∈ΩLx] 使得f(x)=(x-c)q(x)+r令x=c,即得,f(c)=r
文档格式:PDF 文档大小:138.44KB 文档页数:14
吉林大学:《线性代数》课程教学资源(讲稿)第二章 行列式 §2.1 行列式的定义
文档格式:PDF 文档大小:158.46KB 文档页数:23
定义3.1设D是一个n阶行列式在D中 任意选定k个行,k个列(1≤k≤n) ( 1)这些行、列相交处的元素按其原有的 工 相对位置就构成一个k阶行列式M, 称为D的一个k阶子式; (2)这些行、列以外的元素按其原有的相 对位置就构成一个n-k阶行列式M 称为M的余子式;记为M
文档格式:PDF 文档大小:98.51KB 文档页数:9
设有n个元方程组成的方程组,其系数构成的n阶行列式
文档格式:PDF 文档大小:106.36KB 文档页数:8
3.2矩阵的乘法 定义2.1(矩阵的乘法)设A=(a)是一个mxn矩阵,B=(b)是一个 nxp矩阵即A的列数等于B的行数规定A与B的记AB是一个m×p矩阵 工其第i行第j列的元素等于A的第行各元素与B的第列对应元素的乘积 之和,即,AB=
文档格式:PDF 文档大小:105.54KB 文档页数:7
3.4转置以及特殊矩阵 定义4.1设A=(an),把A的行写成列而得的 mxn nxm矩阵称为A的转置矩阵,记为AT,即
文档格式:PDF 文档大小:111.54KB 文档页数:8
3.6可逆矩阵 定义6.1设A是一个n阶矩阵若有阶矩阵B 使得AB=BA=,则称A是一个可逆矩阵(非奇 工异矩阵、非退化矩阵),并称B是A的一个逆. 例如,设
文档格式:PDF 文档大小:115.9KB 文档页数:12
3.8矩阵的秩数 定义8.1设A是任意矩阵若A=0,则 说A的秩数为0;若A≠0,则A的非零子式的 最高阶数就称为A的秩数,记为秩A 显然对于任意的mxn矩阵A,均有 秩A≤min{m,n}.当秩A=min{m,n}时,称 是满秩矩阵;特别地,当秩A=m时,称之 为行满秩的;当秩A=n时,称之为列满秩的
首页上页903904905906907908909910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9104 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有