点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:2.82MB 文档页数:15
中锰白口铸铁是适应我国资源和生产条件而研究发展的抵抗磨料磨损材料。由于其优异的经济效益和生产便利,已成功地用于制做砂浆泵体和分级机衬铁等矿山易磨件。本文根据不同成分及热处理的中锰白口铸铁在各类磨料磨损试验机上测试的结果讨论组织对抗磨性的影响及此影响与各类磨料磨损的机制的关系。低应力冲刷磨损的测试是在混砂盘及橡胶轮两种磨损试验机进行。高硬度的马氏体-碳化物组织最抗磨。脆性相的存在对抗磨性不利。硼加入中锰白口铸铁能使碳化物显微硬度和宏观硬度增加,但使强度和韧性降低。硼适量加入对抗磨性有利。这与此类磨损是宏观冲刷磨损机制有关。 高应力碾研磨损的测试是用肖盘对磨和三体滚轮挤轧两种磨损方式进行。抗磨性与硬度和韧性有关,但基体组织的显微硬度时常起决定性影响。中锰白口铸铁采用Cu Cr Mo综合合金化提高淬透性。残留奥体量大对抗磨性不利。这与此类磨损是以显微切削磨损机制为主有关。最后小能量多次冲击磨损的测试是以冲头连续冲撞方式进行。抗磨性与材料的冲击韧性有很大关系。低碳含量,稀土变质处理改变碳化物为断开分布的板块状都可起有利影响。这是由于形变磨损机制在这类磨损中起主要作用。如此可以得出结论,抗磨材料的最合适的组织与磨料磨损的类别和其磨损机制有关
文档格式:PDF 文档大小:829.23KB 文档页数:8
通过预制张开节理类岩石试件,在单轴压缩条件下,研究节理密度及倾角的组合作用对试件强度和变形特征的影响.试验结果表明:(1)随着节理倾角的增大,应力-应变曲线由多峰值转变为单峰值,试件脆性增强,延性减弱;(2)节理密度对当量峰值强度的影响与节理倾角大小有关,对当量弹模的影响呈“V”形变化,即当量弹模随着节理密度的增大呈现先减小后增大的变化规律;(3)当量弹模随节理倾角的增大而增大,在节理倾角为90°的时候达到最大值,为完整试件弹性模量的70%~80%;(4)节理倾角对多节理类岩石试件当量峰值强度和当量弹性模量的影响大于节理密度的影响.对试验结果进一步分析发现:节理密度及节理倾角与应力-应变曲线、当量峰值强度及当量弹性模量之间的关系,其变化规律与试件的破坏过程息息相关,其破坏模式可分为张拉破坏、剪切破坏和复合破坏
文档格式:PDF 文档大小:1.22MB 文档页数:6
在实验室用Gleeble3500热模拟试验机制备了一种无Si TRIP钢.利用拉伸试验机、扫描电镜、透射电镜、X射线衍射以及热膨胀仪对其力学性能、微观组织和相变规律进行研究,在此基础上分析了贝氏体相变温度和时间对力学性能和残余奥氏体的影响.无Si TRIP钢呈现出良好的整体力学性能,抗拉强度分布在740~810 MPa,延伸率均在25%以上,最高可达32%以上;贝氏体等温温度为420℃时能获得最佳的综合力学性能,抗拉强度随贝氏体相变时间增加而下降,延伸率随之上升,而屈服强度没有显著变化.无Si TRIP制的铁素体晶粒大小约为3~4μm,比含Si TRIP钢铁素体晶粒细小;残余奥氏体的体积分数在8%~10%,比含Si TRIP钢低约3%;420℃保温300 s后贝氏体相变基本结束,而碳的扩散仍然在进行;无Si TRIP钢贝氏体相变速率比含Si TRIP钢快,贝氏体相变总量也更多
文档格式:PDF 文档大小:2.21MB 文档页数:6
岩块体崩塌破坏的突发性使其成为最难预防的地质灾害,严重威胁人类的生命财产安全.边坡岩块体崩塌破坏多是系统不稳定导致的动力破坏,而用振动特征参数来进行安全监测和损伤评价更为有效.本文应用激光多普勒测振技术,通过固有振动频率对危岩块体主控结构面的黏结力损伤进行定量分析.通过改进后的极限平衡模型,得出结构面不断劣化块体的安全系数由原来的1.17下降到1.04,与实际破坏结果相符.试验结果表明:固有振动频率一方面可对危岩块体累积损伤进行有效识别,另一方面可以为黏结力参数的合理确定提供客观的数据支持.因此,基于固有振动频率分析的激光多普勒测振技术可实现边坡岩块体的累计损伤评价,并将在未来的工程应用中发挥巨大的作用
文档格式:PDF 文档大小:754.14KB 文档页数:8
为研究Q420C角钢在大矫直应变过程中的铸坯凝固传热行为以及AlN析出对铸坯和轧材质量的影响,本文通过ProCAST模拟软件和射钉试验,对不同参数条件下铸坯表面和角部温度以及坯壳厚度等进行模拟计算,并提出了凝固坯壳厚度修正公式.通过Gleeble实验得出,铸坯在1008~1364℃温度范围内时具有较好的热塑性.对AlN析出的热力学和动力学研究表明,铸坯应避开在AlN析出\窗口\内矫直,轧制前加热炉均热温度控制在1160~1200℃,终轧温度控制在850℃以上可减少AlN在奥氏体晶界沉淀析出.经过工艺试验,成功开发出Q420C角钢,轧材平均合格率达到90%,综合性能指标满足要求
文档格式:PDF 文档大小:596.73KB 文档页数:8
为实现岩石试样蠕变全过程的准确模拟,并从细观角度探究蠕变过程中微裂隙的发生和发展规律,在二维颗粒流程序(PFC2D)中开发出具有黏弹塑性特征的西原体流变接触本构模型,进一步提出包含两种非定常元件的非定常西原体模型,推导了模型本构关系和蠕变方程.在PFC2D中调用自定义西原体流变模型,通过参数调试,获得与真实试样具有相同强度特性的数值试样.以室内单轴压缩蠕变试验数据为基础,在Matlab中对模型非定常参数进行拟合反演分析.在此基础上,进行单轴压缩蠕变试验的模拟,计算过程中分别采用定常和非定常两种模型,并对微裂隙进行监测.对比分析结果表明:定常模型仅适用于衰减和稳定蠕变阶段;非定常模型也可用于描述加速蠕变阶段,从而准确模拟蠕变全过程;加速蠕变阶段主要是由微裂隙的加速发展而产生,加速蠕变将导致试样剪切破坏
文档格式:PDF 文档大小:1.97MB 文档页数:11
本文总结了珠光体和珠光体—铁素体球铁齿轮的齿面接触疲劳极限应力的测定结果。根据齿轮寿命试验的结果数据,采用ISO齿轮承载能力计算方法,求得可靠度为0.99的接触疲劳曲线方程,和循环基数N0=5×107时的接触疲劳极限应力σHlim:当HB=253时,σHlim=673牛/毫米2;当HB=226时,σHlim=633牛/毫米2。上述数值均高于国外同硬度的球铁齿轮或相当碳钢齿轮的数值。试验中,还测定了齿面的磨损曲线,进行了齿轮润滑状态的计算。同时采用齿面复膜和扫瞄电镜分析技术,揭示了珠光体球铁齿轮齿面破坏的两种不同方式
文档格式:DOC 文档大小:20.99MB 文档页数:105
第一部分 有机化学实验的一般知识 一、教学目的 二、实验室规则 三、有机化学实验室安全知识 四、有机化学实验室常用的仪器和装置 五、有机化学实验室常用设备和使用 六、实验预习、实验记录和实验报告的基本要求 第二部分 基础实验 实验一 简单玻璃工操作 实验二 重结晶 实验三 有机化合物的熔点和沸点的测定 实验四 常压蒸馏和分馏 实验五 萃取 实验六 薄层色谱 实验七 减压蒸馏 实验八 化合物性质试验一 实验九 化合物性质试验二 第三部分 综合实验 实验十 乙酰苯胺的制备 实验十一 乙酸乙酯的制备 实验十二 环己烯的制备 实验十三 1-溴丁烷的合成 实验十四 呋喃甲醇和呋喃甲酸的制备 实验十五 亚苄基乙酰苯的制备及其与溴的反应 实验十六 2-硝基-1,3-苯二酚的制备 实验十七 香豆素-3-羧酸的合成 实验十八 环己酮肟的贝克曼重排 实验十九 1-苯基-3-甲基-5-吡唑酮的制备 实验二十 甲基红的制备 第四部分 创新实验 实验二十一 苯甲酸的超声合成 实验二十二 肉桂酸的微波合成 实验二十三 安息香的辅酶法合成 实验二十四 葡萄糖酸-δ-内酯的合成 实验二十五 对氨基苯甲酸的合成 附 录 一、工具书及实验参考书 二、常用有机溶剂及纯化 三、常用试剂的配制 四、常用干燥剂的性能与应用范围 五、危险化学品的使用 六、实验报告格式
文档格式:PDF 文档大小:3.78MB 文档页数:8
接触式应变测量是材料和构件高温力学行为研究的必要手段,其测量精度是高温应变测量领域关注的热点,而应变栅丝的高温蠕变性能是测量精度的主要影响因素.本文首先根据材料蠕变机理分析应变片的蠕变特性,搭建高温应变栅丝蠕变电测的系统,基于诺顿蠕变规律与试验的测量结果,建立应变栅丝的高温蠕变模型.论文基于应变栅丝蠕变输出有限元模型,对栅丝蠕变输出的影响因素进行研究;最后建立了高温应变蠕变补偿模型,以提高高温应变测量精度,并取得了试验验证
文档格式:PDF 文档大小:2.01MB 文档页数:12
从细观角度、采用颗粒离散元法开展了预制裂隙花岗岩循环加卸载的数值模拟试验。首先,使用图像处理技术识别花岗岩中的不同细观组分、结合室内单轴压缩试验结果对细观力学参数进行了标定。然后,通过编制颗粒流代码追踪裂隙的类型和扩展过程,分析岩石破坏过程中裂隙发展的阶段性特征。结果表明:不同倾角裂隙岩石的新生裂隙走向与预制裂隙贯通方向基本一致;根据新生裂隙的优势倾向分组得到裂隙起裂角与预制裂隙倾角的关系:倾角β≤45°时剪切和张拉裂隙的起裂角单调递减,倾角β≥60°时剪切和张拉裂隙的起裂角单调递增;循环扰动荷载增加了裂隙岩体的轴向变形,轴向累积残余应变曲线呈反S形、提高扰动荷载应力上限促使曲线进入加速阶段;试件峰值强度随裂隙倾角增大表现出先减小后增大的趋势,峰值强度为实验室完整岩石单轴抗压强度的63% ~ 89%,反映了较为明显的劣化现象;在循环荷载作用下,剪切裂隙和张拉裂隙增长曲线表现出明显的变化特点,在裂隙不稳定扩展阶段中张拉裂隙数目增长速率显著大于剪切裂隙,对分析岩石变形破坏过程具有一定的参考意义
首页上页8990919293949596下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有