点击切换搜索课件文库搜索结果(9505)
文档格式:PPT 文档大小:749KB 文档页数:81
z平面内的任一条有向曲线C可用 z=z(t),a≤t≤β 表示,它的正向取为t增大时点z移动的方向, z(t)为一条连续函数. 如果z(to)≠0,ato
文档格式:PPT 文档大小:210KB 文档页数:43
一个以z为中心的圆域内解析的函数f(z),可以 在该圆域内展开成z-z0的幂级数.如果f(z)在zo 处不解析,则在z的邻域内就不能用z-z的幂 级数来表示.但是这种情况在实际问题中却经 常遇到.因此,在本节中将讨论在以z为中心 的圆环域内的解析函数的级数表示法
文档格式:DOC 文档大小:144KB 文档页数:4
在解析几何中,两个点a和B间的距离等于向量a-B的长度 定义13长度-(称为向量a和B的距离,记为d(a,B) 不难证明距离的三条性质
文档格式:DOC 文档大小:160.5KB 文档页数:5
由第五章得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C使CAC成对角形现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强这一节的主要结果是: 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T
文档格式:DOC 文档大小:73KB 文档页数:1
定义10设v1,V2是欧氏空间V中两个子空间如果对于任意的a∈V1,BEV2 恒有 (a,B)=0 则称V,2为正交的,记为V1⊥V2一个向量,如果对于任意的B∈V,恒有 (a,B)=0
文档格式:DOC 文档大小:83KB 文档页数:2
定义9欧氏空间V的线性变换A叫做一个正交变换如果它保持向量的内积 不变,即对任意的,都有a,B∈V,都有 (Aa, AB)=(a, B)
文档格式:DOC 文档大小:57.5KB 文档页数:1
定义8实数域R上欧氏空间V与V称为同构的如果由V到V有一个双射
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
文档格式:DOC 文档大小:176.5KB 文档页数:5
一、向量的内积 定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质:
文档格式:DOC 文档大小:2.36MB 文档页数:125
习题1 1.试利用贷款各参数间的关系式,完成以下公积金贷款利率表(表1-9) 表1-9个人住房公积金贷款利率表 年份月数月利率/‰年利率%月还款额本息总额总利息 1123.45 4.14到期一次还本付息10414.000414.000
首页上页940941942943944945946947下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9505 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有