网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(1012)
河北建筑工程学院:《c++语言程序设计与实验》第4章 数组
文档格式:PPT 文档大小:144KB 文档页数:23
数组是有序数据的集合 数组中的每一个元素都属于同一个数据类型 用一个统一的数组名和下标来唯一地确定数组中的元素 数组是一个在内存中顺序排列的由若干相同数据类型的元素组成的数据集合
鞍山科技大学:《C语言程序设计与数据结构》第11章 文件
文档格式:PPT 文档大小:150KB 文档页数:33
在程序运行时,程序本身和数据一般都存放在内存中 。当程序运行结束后,存放在内存中的数据被释放。 如果需要长期保存程序运行所需的原始数据,或程序 运行产生的结果,就必须以文件形式存储到外部存储介质上。 11.1C语言文件概述 11.2文件的打开与关闭 11.3文件的读写操作 11.4位置指针与文件定位 11.5出错检测
基于YOLOv3的无人机识别与定位追踪
文档格式:PDF 文档大小:892.93KB 文档页数:7
近年来,无人机入侵的事件经常发生,无人机跌落碰撞的事件也屡见不鲜,在人群密集的地方容易引发安全事故,所以无人机监测是目前安防领域的研究热点。虽然目前有很多种无人机监测方案,但大多成本高昂,实施困难。在5G背景下,针对此问题提出了一种利用城市已有的监控网络去获取数据的方法,基于深度学习的算法进行无人机目标检测,进而识别无人机,并追踪定位无人机。该方法采用改进的YOLOv3模型检测视频帧中是否存在无人机,YOLOv3算法是YOLO(You only look once,一次到位)系列的第三代版本,属于one-stage目标检测算法这一类,在速度上相对于two-stage类型的算法有着明显的优势。YOLOv3输出视频帧中存在的无人机的位置信息。根据位置信息用PID(Proportion integration differentiation,比例积分微分)算法调节摄像头的中心朝向追踪无人机,再由多个摄像头的参数解算出无人机的实际坐标,从而实现定位。本文通过拍摄无人机飞行的照片、从互联网上搜索下载等方式构建了数据集,并且使用labelImg工具对图片中的无人机进行了标注,数据集按照无人机的旋翼数量进行了分类。实验中采用按旋翼数量分类后的数据集对检测模型进行训练,训练后的模型在测试集上能达到83.24%的准确率和88.15%的召回率,在配备NVIDIA GTX 1060的计算机上能达到每秒20帧的速度,可实现实时追踪
基于TATLNet的输电场景威胁检测
文档格式:PDF 文档大小:754.89KB 文档页数:8
在输电场景中,吊车等大型机械的运作会威胁到输电线路的安全。针对此问题,从训练数据、网络结构和算法超参数的角度进行研究,设计了一种新的端到端的输电线路威胁检测网络结构TATLNet,其中包括可疑区域生成网络VRGNet和威胁判别网络VTCNet,VRGNet与VTCNet共享部分卷积网络以实现特征共享,并利用模型压缩的方式压缩模型体积,提升检测效率,从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警。针对训练数据偏少的问题,利用多种数据增强技术相结合的方式对数据集进行扩充。通过充分的试验对本方法的多个超参数进行探究,综合检测准确率和推理速度来研究其最优配置。研究结果表明,随着网格数目的增加,准确率也随之增加,而召回率有先增加后降低的趋势,检测效率则随着网格的增加迅速降低。综合检测准确率与推理速度,确定9×9为最优网格划分方案;随着输入图像尺寸的增加,检测准确率稳步上升而检测效率逐渐下降,综合检测准确率和效率,选择480×480像素作为最终的图像输入尺寸。输入实验以及现场部署表明,相对于其他的轻量级目标检测算法,该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性和效率,满足实际应用的需要
《软件技术及数据库》目录一
文档格式:PPT 文档大小:64.5KB 文档页数:1
1数据库基本理论 2VP系统概述 3.VFP的数据基础 4表的创建和基本操作 5、查询和多表操作主讲:刘玉萍 6数据库操作与视图的使用
基于一维卷积神经网络的儿童睡眠分期
文档格式:PDF 文档大小:1.43MB 文档页数:9
高质量睡眠与儿童的身体发育、认知功能、学习和注意力密切相关,由于儿童睡眠障碍的早期症状不明显,需要进行长期监测,因此急需找到一种适用于儿童睡眠监测,且能够提前预防和诊断此类疾病的方法。多导睡眠图(Polysomnography,PSG)是临床指南推荐的睡眠障碍基本检测方法,通过观察PSG各睡眠期间的变化和规律,对睡眠质量评估和睡眠障碍识别具有基础作用。本文对儿童睡眠分期进行了研究,利用多导睡眠图记录的单通道脑电信号,在Alexnet的基础上,用一维卷积代替二维卷积,提出一种1D-CNN结构,由5个卷积层、3个池化层和3个全连接层组成,并在1D-CNN中添加了批量归一化层(Batch normalization layer),保持卷积核的大小保持不变。针对数据集少的情况,采用了重叠的方法对数据集进行了扩充。实验结果表明,该模型儿童睡眠分期的准确率为84.3%。通过北京市儿童医院的PSG数据获得的归一化混淆矩阵,可以看出,Wake、N2、N3和REM期睡眠的分类性能很好。对于N1期睡眠,存在将N1期睡眠被误分类为Wake、N2和REM期睡眠的情况,因此以后的工作应重点提升N1期睡眠的准确性。总体而言,对于基于带有睡眠阶段标记的单通道EEG的自动睡眠分期,本文提出的1D-CNN模型可以实现针对于儿童的自动睡眠分期。在未来的工作中,仍需要研究开发更适合于儿童的睡眠分期策略,在更大数据量的基础上进行实验
多模态学习方法综述
文档格式:PDF 文档大小:1.31MB 文档页数:14
大数据是多源异构的。在信息技术飞速发展的今天,多模态数据已成为近来数据资源的主要形式。研究多模态学习方法,赋予计算机理解多源异构海量数据的能力具有重要价值。本文归纳了多模态的定义与多模态学习的基本任务,介绍了多模态学习的认知机理与发展过程。在此基础上,重点综述了多模态统计学习方法与深度学习方法。此外,本文系统归纳了近两年较为新颖的基于对抗学习的跨模态匹配与生成技术。本文总结了多模态学习的主要形式,并对未来可能的研究方向进行思考与展望
《计算机网络与电子商务》第九章 数据库系统
文档格式:PPT 文档大小:841.5KB 文档页数:53
计算机始于数值计算,却在非数值计 算中得到了广泛的用,显示了它强大的生 命力。在现代计算机应用领域中,数据处 理占约70~80%。数据库技术是数据处理的 最新成果。它的出现,使得计算机应用更 加广泛地渗透到工业、农业、商业、文教、 卫生及军事等各个领域
中国人民大学:《数据库系统概论》课程教学资源(PPT课件讲稿)第5章 数据库安全
文档格式:PPT 文档大小:930.5KB 文档页数:336
5.1 安全性 5.2 完整性 5.3 并发控制 5.4 恢复 5.5 数据库复制与数据库镜像
《工程科学学报》:基于索引-存根表的云存储数据完整性审计(内蒙古民族大学、北京科技大学)
文档格式:PDF 文档大小:1.26MB 文档页数:11
本文首先提出了一个结构简单且易于维护的索引–存根表结构,并基于该结构提出了一个具有隐私保护属性的云存储第三方审计方案,该方案能够有效地支持对外包数据进行各种数据块级的远程动态操作.然后,在随机预言机模型下,对方案提供的数据完整性保证给出了形式化的安全证明,对方案中审计协议的隐私保护属性也给出了形式化的安全分析.最后,针对方案的性能进行了理论分析和相关的实验比较,结果表明该方案是高效的
首页
上页
92
93
94
95
96
97
98
99
下页
末页
热门关键字
《物流管理》
三维
武汉大学
数控
教学原则
mysql数据库
三国
企业会计
《政策分析》
《旅游管理》
集成电子技术
混凝土课程设计
化工应用
过渡
概念设计
电池
地理
参数化设计
物流信息
武汉工业学院
稳压电路
网络管理
数据流
生物信息
气体
粮油加工
客户服务管理
酒店管理
经济预测与决策方法
激光原理
基金管理
工程控制工程]
工程管理
发明
动物
动画学院
电子电路
电机
餐饮管理
C语言、操作系统
搜索一下,找到相关课件或文库资源
1012
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有