点击切换搜索课件文库搜索结果(9822)
文档格式:PDF 文档大小:405.99KB 文档页数:26
人们最熟悉的简单函数无非两类:幂函数和三角函数。英国数学 家 Taylor 在 18 世纪初找到了用幂函数的(无限)线性组合表示一般 函数 f x( )的方法,即通过 Taylor 展开将函数化成幂级数形式
文档格式:PDF 文档大小:393.33KB 文档页数:46
在实际应用中,常常需要考察某种物理量(如温度,密度,电场 强度,力,速度等)在空间的分布和变化规律,从数学和物理上看这 就是 场的概念
文档格式:PDF 文档大小:302.45KB 文档页数:31
重积分的性质 性质 1(线性性)设 f 和 g 都在区域 Ω 上可积,α, β 为常数,则 α + βgf 在 Ω 上也可积,并且 ( )d α β f + g V ∫ Ω
文档格式:DOC 文档大小:279.5KB 文档页数:4
北京大学:《高等代数》课程教学资源(讲义)第十章 10.2.2 定理、牛顿公式
文档格式:PDF 文档大小:142.81KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时
文档格式:PDF 文档大小:241.11KB 文档页数:29
集合论的基础是由德国数学家 Cantor 在19世纪 70 年代奠定的。 集合:指具有某种特定性质的具体的或抽象的对象汇集成的总体。 这些具体的或抽象的对象称为该集合的元素
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:PDF 文档大小:1.11MB 文档页数:106
如果程序的对象数量有限,且寿命可知,那么这个程序是相当 简单的。 一般来说,程序都是根据具体情况在不断地创建新的对象,而这些情况又 只有在程序运行的时候才能确定。不到运行时你是不会知道你到底需要多 少对象,甚至是什么类型的对象。为了解决这种常见的编程问题,你得有 办法能在任何时间,任何地点,创建任何数量的对象。所以你不能指望用 命名的 reference来持有每个对象 Myobject 原因就在于,你不可能知道究竟需要多少这样的对象 针对这个相当关键的问题,绝大多数语言都提供了某种解决办法
首页上页974975976977978979980981下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9822 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有