点击切换搜索课件文库搜索结果(9905)
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且 (=+++, n2=121+22+…+n2n (nn =tne1 +tn2++ 将其写成矩阵形式 112…ㄣn t21 (n2,n)=(1,2n2122n, :: nn2…tm 定义.11我们称矩阵 (2…n t2122…t2 T=:: Imt In2 为从2n到2的过渡矩阵
文档格式:DOC 文档大小:54.5KB 文档页数:3
由前面的讨论可知,并不是对于每一个线性变换都有一组基,使它在这组基 下的矩阵成为对角形.下面先介绍一下,在适当选择的基下,一般的一个线性变 换能化简成什么形状
文档格式:DOC 文档大小:146.5KB 文档页数:3
对于给定的n维线性空间V,A∈L(V),如何才能选到V的一个基使关于 这个基的矩阵具有尽可能简单的形式由于一个线性变换关于不同基的矩阵是相 似的因而问题也可以这样提出在一切彼此相似的n阶矩阵中如何选出一个形 式尽可能简单的矩阵这一节介绍不变子空间的概念,来说明线性变换的矩阵的 化简与线性变换的内在联系
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:PPS 文档大小:582KB 文档页数:25
问题1极大似然估计具有不变性,矩估计 是否也具有? 答否 例如服从反射正态分布,其p.d.f为 20 现用矩法分别对和作估计
文档格式:DOC 文档大小:224.5KB 文档页数:6
一、线性变换的特征值和特征向量的概念
文档格式:DOC 文档大小:169KB 文档页数:3
第三章3-3行列式的初步应用 3.3.1行列式的应用:用行列式求逆矩阵;克莱姆法则 定义设矩阵 a1a12…an A= a21a22…a an1an2…a 矩阵 . A12A22An2 : AnA2n…A 称为A的伴随矩阵。 由行列式的性质容易证得
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
首页上页984985986987988989990991下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9905 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有