Adaptive Reconnaissance Golay-3 Optical Satellite (ARGOS ADAPTIVE RECONNAISSA k Prof David W. Miller ★ ★ ARGOS 16.684 Y-3 OPTICAL SAT
Chart: 1 Adaptive Reconnaissance Golay Adaptive Reconnaissance Golay -3 Optical Satellite 3 Optical Satellite (ARGOS) (ARGOS) Prof David W. Miller Prof David W. Miller
ARGOS Overview Angular Resolution at 2=550 nm: 5 arcsec Wavelength Regime 400-700 nm FOr (Field-of-Regard): 120(full cone) FoV(Field-of-view)-min 3x3 arcmin Moon SNR 100(Min) Pointing Accuracy: +/ -10 arcsec Autonomous Operation >1 hour Goal Demonstrate the feasibility First field operation in May Interferometry Wireless Surrogate technology COMM Ground station Station M. LT Frictionless Air Bearing RWA
Chart: 2 ARGOS Overview ARGOS Overview ISS Moon Frictionless Air Bearing RWA Surrogate Ground Station M.I.T. Angular R e s olution at λ=550 nm: 0.35 arcsec Wavelength Regime: 400-700 nm FOR (Field-of-Regard): 12 0° (full cone) FOV (Field-of-Vie w)-min: 3 x 3 ar c min SNR 10 0 (Min) Pointi n g Accuracy: +/- 10 arcsec Autonomous O peration: > 1 hour Angular R e s olution at λ=550 nm: 0.35 arcsec Wavelength Regime: 400-700 nm FOR (Field-of-Regard): 12 0° (full cone) FOV (Field-of-Vie w)-min: 3 x 3 ar c min SNR 10 0 (Min) Pointi n g Accuracy: +/- 10 arcsec Autonomous O peration: > 1 hour Wireless COMM Station First field operation in May First field operation in May Goal : Demonstrate the feasibility of Interferometry technology Goal : Demonstrate the feasibility of Interferometry technology
Full structure
Chart: 3 Full Structure Full Structure
Sub-Aperture Manufacturing TAKAHASHI 8-inch High Precision(RMs WF errors 1/20 n)Telescope TAKAHASHI Designed optimized achromatic doublet to convert a focal telescope to afocal with Magnification m=10 FK51/ BaK2 Final Design △CTE5.3 0.0027 RMS Error FK51 BaKe -Some sensitivity to thermal shock -Manufacturable tolerances
Chart: 4 Sub-Aperture Manufacturing Aperture Manufacturing TAKAHASHI 8-inch High Precision (RMS WF errors 1/20 λ) Telescope Final Design Designed optimized achromatic doublet to convert a focal telescope to afocal with Magnification m=10 •FK51/BaK2 –∆ CTE 5.3 –0.0027 RMS Error –Some sensitivity to thermal shock –-Manufacturable tolerances •FK51/BaK2 –∆ CTE 5.3 –0.0027 RMS Error –Some sensitivity to thermal shock –-Manufacturable tolerances FK51 BaK2
Relay optics design 1. Sub aperture 2. Collimator 3. FSM+ODL 4. Pyramidal Mirror The Advantages of Two Mirror Design 5. Beam Combiner the cost, the controller complexity 6. CCD less reflectance loss, smaller possible misalignment errors, compactness 川5十
Chart: 5 Relay Optics Design Relay Optics Design 1. Sub Aperture 2. Collimator 3. FSM+ODL 4. Pyramidal Mirror 5. Beam Combiner 6. CCD 1 2 3 4 5 6 The Advantages of Two Mirror Design the cost, the controller complexity, less reflectance loss, smaller possible misalignment errors, compactness The Advantages of Two Mirror Design the cost, the controller complexity, less reflectance loss, smaller possible misalignment errors, compactness
Allowable structural MIsalignments 45-A+B=45-B A 2B=A Magnification m=10 B=0.5 A10=5A. In reality, a factor of 6.4 works well up to 0.01 degree 45-B Telescope Tilt FSM Comp FSM OPD Strehl Ratio SR Deal larcsecDegl Max[ mm Aberrated restored 0.034 degree 000010.36 -0.00064 0.687 0.982 B= FSM 0.001 3.6 -0.0064 0.016 0.979 rotation 0.00518 -0.032 0.192 0.907 0.01 -0.064 0.064 0.604 0.01 -0.064 0.0002 0.189 0859 0.01 degree tilt FSM Correction OPD Correction
Chart: 6 Allowable Structural Allowable Structural Misalignments Misalignments B= FSM rotation A B 45-B 45-A+B = 45- B 2B=A B= 0.5 *A *10 = 5 A. In reality, a factor of 6.4 works well up to 0.01 degree Telescope Tilt [Deg] [arcsec] FSM Com p [Deg] Max 0.034 degree FSM OPD [mm] Strehl Ratio Aberrated SR restore d 0.0001 0.36 -0.00064 0 0.687 0.982 0.001 3.6 -0.0064 0 0.016 0.979 0.005 18 -0.032 0 0.192 0.907 0.01 36 -0.064 0 0.064 0.604 0.01 36 -0.064 0.0002 0.189 0.859 Magnification m=10
Passive/Active Actuators Mount 14 urad FSM MOUNT PHYSIK INS Angular range+/-7° ° Angular res.+/-0.0008°(14urad) 600 urad FSM O Linear Range 1 cm Linear res I um FSM+ODL Angular Range +/-600 urad Angular Res. +/-0.05 urad Linear Range 12 um · Linear res.0.2nm 4‖。十 Pyramid Errors W/o fsm correction SR=0.444 Pyramid Errors 7 /fSM Correction Pyramidal mirror Pyramidal mount SR=0.960
Chart: 7 Passive/Active Actuators Passive/Active Actuators 1 2 3 4 5 6 FSM+ODL • Angular Range +/- 600 µrad • Angular Res. +/- 0.05 µrad • Linear Range 12 µ m • Linear Res. 0.2 nm FSM+ODL • Angular Range +/- 600 µrad • Angular Res. +/- 0.05 µrad • Linear Range 12 µ m • Linear Res. 0.2 nm FSM MOUNT •Angular Range +/- 7 ° • Angular Res. +/- 0.0008° (14 µrad) • Linear Range 1 cm • Linear Res. 1 µ m FSM MOUNT •Angular Range +/- 7 ° • Angular Res. +/- 0.0008° (14 µrad) • Linear Range 1 cm • Linear Res. 1 µ m 7° 600 µrad 0.05 µrad FSM Mount 14 µrad Pyramid Errors w/o FSM Correction SR = 0.444 Pyramid Errors w/ FSM Correction Pyramidal Mirror Pyramidal mount SR = 0.960
Attitude Control System(ACS) d=- size of pixels (un 50 deg 1.5 deg Overlap f=focal length of optic 7x5.25 deg viewfinder 0.656 arcmin FOV f=38.8 mm 3.07x2.3 arcmin 0.288 arcsec f=5300470um Sensor 1 Active Electronic Compass Balancing System Sensor 2. Viewfinder #53155 ACS Actuator. Sensor 3 Reaction Rate gyro Wheel Chart: 8
Chart: 8 Attitude Control System (ACS) Attitude Control System (ACS) Sensor 2: Viewfinder Sensor 2: Viewfinder ACS Actuator: Reaction Wheel ACS Actuator: Reaction Wheel Body r ate Body rotation Wheel speed + e τ Q d Q Sensor 3: Rate Gyro Sensor 3: Rate Gyro Sensor 1: Electronic Compass Sensor 1: Active Electronic Compass Balancing System Active Balancing System
Structures Design Viewfinder Holes Pyramidal Fast Through Setscrews Motor Combiner CCD ous Section Setserews and Pins in Holes
Chart: 9 Structures Design Structures Design
Sparse-aperture Optics/Control System ( socS)Framework O Analyze Optics Performance Requirements Br EE SR PSFMTF SNR FoV ACS 2 Determine Array configuration L D#of Aperture 3 Determine Tolerable beam Track Combining Errors WFE Piston Tilt/Tip Pupil Budget mapping RMS WF Error Budget Tree 4 Design/Build Sub-Aperture 6 Design dEsign Telescope Relay Optics" CCD System且莒豆 Focal 1 M=d/D Reflection Geometry d Beam Combiner Control Channel og 0 Design, Analyze, Build Structures m3 FSM FMs ODLs Structure VibrationAllowable misalignment 8 Develop Wavefront Sensors, Controllers
Chart: 10 Sparse -aperture Optics/Control aperture Optics/Control System (SOCS) Framework System (SOCS) Framework PSF PSF XX Analyze Optics Performance Requirements Analyze Optics Performance Requirements YY Determine Array Configuration Determine Array Configuration Z Determine Tolerable Beam Combining Errors Z Determine Tolerable Beam Combining Errors [ Design/Build Sub-Aperture Telescope [ Design/Build Sub-Aperture Telescope \ Design Relay Optics \ Design Relay Optics __ Develop Wavefront Sensors,Controllers Develop Wavefront Sensors,Controllers ^^ Design, Analyze, Build Structures Design, Analyze, Build Structures Track WFE Budget θr θr EE EE SR SR ACS ACS SNR SNR FOV FOV MTF MTF L L D D # of Ap ertur e # of Ap ertur e Piston Piston Tilt/Tip Tilt/Tip Pupil mapping Pupil mapping # R efl e ction # R efl e ction Ge o m etry Ge o m etry # Control Chann el # Control Chann el Beam Com biner Beam Com biner Assembly/Alignment Errors Assembly/Alignment Errors RRMMS WF Error Budget S WF Error Budget TTrreeee F ocal_1 F ocal_1 M=d/D M=d/D FSM FSM FMs FMs ODL s ODL s Structure Vibration Structure Vibration ]Design CCD System ]Design CCD System Beam Combininng Errors Beam Combininng Errors Sub Aperture RMS WFE Sub Aperture RMS WFE Optical Components Errors Optical Components Errors Residual Optics Design WFE Residual Optics Design WFE Allo w abl e mi s alignment Allo w abl e mi s alignment