当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《全球定位系统原理》(英文版)Lecture 3 Gravitational potential

资源类别:文库,文档格式:PDF,文档页数:22,文件大小:89.05KB,团购合买
Gravitational potential In spherical coordinates: need to solve
点击下载完整版文档(PDF)

12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 1 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring

Review In last lecture we looked at conventional methods of measuring coordinates Triangulation, trilateration, and leveling Astronomic measurements using external bodies Gravity field enters in these determinations 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 2 Review • In last lecture we looked at conventional methods of measuring coordinates • Triangulation, trilateration, and leveling • Astronomic measurements using external bodies • Gravity field enters in these determinations

Gravitational potential In spherical coordinates: need to solve 1 6 1 OV (r)+ (sine)+-22 ra r- since r- sin 0 an This is laplace s equation in spherical coordinates 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 3 Gravitational potential • In spherical coordinates: need to solve • This is Laplace’s equation in spherical coordinates 1 r ∂ 2 ∂r 2 (rV ) + 1 r 2 sin θ ∂ ∂θ(sin θ ∂V ∂θ ) + 1 r 2 sin 2 θ ∂ 2 V ∂λ 2 = 0

Solution to gravity potential The homogeneous form of this equation is a"" partial differential equation In spherical coordinates solved by separation oT variables, r=radius 入= longitude andθ=co- latitude V(r,,)=R()g(6)h() 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 4 Solution to gravity potential • The homogeneous form of this equation is a “classic” partial differential equation. • In spherical coordinates solved by separation of variables, r=radius, λ=longitude and θ=co-latitude V( r , θ, λ) = R ( r ) g (θ) h ( λ)

Solution in spherical coordinates The radial dependence of form rn or r-n depending on whether inside or outside body. n is an integer Longitude dependence is sin(mn) and cos(mn)where m is an integer The colatitude dependence is more difficult to solve 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 5 Solution in spherical coordinates • The radial dependence of form r n or r-n depending on whether inside or outside body. N is an integer • Longitude dependence is sin(m λ) and cos(m λ) where m is an integer • The colatitude dependence is more difficult to solve

Colatitude dependence Solution for colatitude function generates Legendre polynomials and associated functions The polynomials occur when m=0 in n dependence. t=cos(0) Pn()= 2 nl dt 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 6 Colatitude dependence • Solution for colatitude function generates Legendre polynomials and associated functions. • The polynomials occur when m=0 in λ dependence. t=cos( θ ) Pn ( t ) = 1 2 n n! d n d t n ( t 2 −1) n

Legendre Functions Low order functions P()=t Arbitrary n P2()=(312-1) 2 values are P3()=(5t3-3) generated by recursive P24(t)=(35t-3012+3 algorithms 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 7 Legendre Functions • Low order functions. Arbitrary n values are generated by recursive algorithms Po ( t ) = 1 P1( t ) = t P2 ( t ) = 1 2 (3 t 2 −1) P3 ( t ) = 1 2 (5 t 3 − 3 t ) P4 ( t ) = 1 8 (3 5 t 4 − 30 t 2 +3)

Associated Legendre Functions The associated functions satisfy the following equation Pn(t)=(-1y(1-2)m2 d 2P() The formula for the polynomials Rodriques formula, can be substituted 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 8 Associated Legendre Functions • The associated functions satisfy the following equation • The formula for the polynomials, Rodriques’ formula, can be substituted Pnm ( t ) = ( −1) m (1 − t 2 ) m/2 d m d t m Pn ( t )

Associated functions P0(t)=1 Pnm(t): n is called P0()=t degree; m is order P1()=-(1-t2)2 m0 http://mathworld.wolframcom/legendrepoLynomial.html 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 9 Associated functions • Pnm(t): n is called degree; m is order • m0 P00 ( t ) = 1 P10 ( t ) = t P11 ( t ) = −(1 − t 2 )1/ 2 P20 ( t ) = 1 2 (3 t 2 −1) P21 ( t ) = − 3 t(1 − t 2 )1/ 2 P22 ( t ) = 3( 1 − t 2 ) http://mathworld.wolfram.com/LegendrePolynomial.html

Ortogonality conditions The Legendre polynomials and functions are orthogonal P()P(t)dt=2 2n+1 Pim(t)pm(t)dt 2(n+m)! 2n+1(n-m) nn 02/1302 12.540Lec03

02/13/02 12.540 Lec 03 10 Ortogonality conditions • The Legendre polynomials and functions are orthogonal: Pn' ( t ) −1 1 ∫ Pn ( t )dt = 2 2 n + 1 δ n'n Pn'm ( t ) −1 1 ∫ Pnm ( t )dt = 2 2 n + 1 ( n + m)! ( n − m)! δ n'n

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共22页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有