5D3 a v BLT aD Mia clem Rudy:Pofu,handed L exBL厂 Recall fum (3. a 24 和2-05a, ConsOrt Lo Cow Aot Baand alano Ve V 尼e fea∥ ou, wt capoud A i' line g s ( aotou:比euu) P.Po t e X y L x: X yuou pulse ·y/e freud ∥,+∈U2 十∈V R Ovc
c Polli fow t BL An Duli MaH 0=u5=ue >8L7 panda now+ BL 2p: Vφ·=o B L xBL了 Atack o B·L +w4 huad (emip l)ilalo bodle fov. 6L Liun you rado
cBLT Duli bc 计n 42h(中x inne Bc 2:(x84 ng (72) ca v ToLT ZoLT 64入A∠ m dacon w (can l owed w d Duli crw Lons "eup Gad (me orMeC A erro w °C) acu salon occ a y<</- c ls le ca/.ee adacs avolD g OCR)=erm Me ac 加wake 如++∈2 LBLT stu TSL
om iod bc (Vo) gande Role D(/) aka∠,d 5x∽D() daeo nd以mha是→2An9,8m A ComM A 9() x 6(x,%)4 4)d8 e ax + 十uedl sue Ve -V
BASIS FOR INTERACTING BwNDARY LAYER THEORY olve viscaus flow eguahoms via asymp tobi senes 尸r4 meyer e 1e)=(9)+E()+∈4(小 ()+E()+e2k1()+ P()=A()P()+eP yp+Ey Since e multipl; es highest-order derivative vi. this is a Singular perturbation variables near w Uy)=(ky)+Eu(xy)+…x e x u=ay2+o(e ()()+∈W() U=u y overn nd metchi n4 cend, oms at s iona EV +影 3一A =-5+ zeroth.0rd Wo U: 0o 矿 4·H=O ,分 3+B U= Ord e 六A=∈V +影 de 说十v+治
Displacement Effects of Boundary Layer on Potential Flow u(x,y) whBL● ctual Flow v(x,ye)≡ve(x) au (ue -u)dy-ye dr where =“(-) y)=uel Displacement Body Model ve(=) D:SPuaCMEM SonE W Flow tangent to displacement bod d or ve=d(ueA)-ye dr △=6 (by comparing with Actual Flow ve) xy)=4(x) Wall Blowing Mode v(2)=wa+/"a ay Wall (x) Flow NOT Uwall- ye a→wal= d(u,6”) (by comparing with Actual Flow)