two nodes are linked to each other At the outermost level, the operation of FOIL can be summarized as Establish the training set consisting of constant tuples, some labelled 0 and some O Until there are no 0 tuples left in the training set Find a clause that characterizes part of thethe target relation
"two nodes are linked to each other
Initialize the local training set T to the training set and let i= 1 a While T contains e tuples Find a literal L to add to the right-hand side of the clause Produce a new training set Ti+ based on those tuples in T; that satisfy Li. If L, intro duces new variables, each such tuple from T; may give rise to several (expanded) In +1. The label of each tuple in Ti+ is the same as that of the parent tuple iples In Increment i and continue can-reachi(X1,22)←
④:0,1)0,2)0,3)(0,4)0,5)0,6)0,8)(1,2)(3,2)(3,4 (3,5)③3,6)③3,8)4,5)4,6)4,8)(6,8)7,6)(7,8) e:(0,0)⑨0,7)(1,0)(1,1(1,3)(1,4)(1,5)(1,6)(1,(1,8) 2,0)(2,1)(2,2)2,3)(2,4)(2,5)(2,6)(2,7(2,8)(3,0 3,1)③3,3)(3,74,0)4,1)142)4,3)144)4,7⑤5,0) 5,1)(5,2)(5,3)5,4)⑤5,5)(5,6{5,7)(5,8)(6,0)(6,1 (6,2)④6,3)(6,4)65)6,6)6,7)(7,0)7,1)(7,2)(7,3) 7,4)75)(7,7(8,0)(8,1)8,2)8,3)⑧8,4)(8,5)(8,6 (8,7)8,8) can-reach (X, X2)+ linked-to(X,, X2) On the second time throu e:0,20.4)0,5)0,6)0,83,5)③363.84.8 linked-to(X, X,)
④:0,2,10,2,3)(0,4,1)0,4,3)(0,5,1)但0,5,3》(0,6,1) (0,6,3)(0,8,1)(0,8,3) 3,5,2)(3,5,4)③3,6,2)③3,6,4 (3,8,2)(3,8,4)485)4,8,6) ⊙:0.0,1)⑩0,0,3)(0,7,1)0,7,3)(1,0,2)(1,1,2)(1,3,2) 4,2(1,5,2)(1,6,2)(1,7,2)(1,8,2(3,0,2)③3,0,4) (3,1,2)③3,1,4(3,3,2)(3,3,4③3,7,2)(3,7,4)4,0,5) 40,6)4,1,5)4,1,6)4,2,5)4,2,6)14,3,5)4,3,6 445)4,4,6)(4,7,5)(4,7,6)6,0,8)(6,1,8)(6,2,8) (6,3,8)(6,4,8)(6,5,8)(6,6,8)(6,7,8)(7,0,67,0,8) 门,1,6)(7,1,87,2,6)7,2,8)7,3,67,3,8)7,4.6 7,4,8)(7,5,67,5,8)7,7,67,78) can-reach(X3, X2) 1.13030530630.3.54 3643448,6 can-reach(X, X2 )+ linked-to(X,, X2)
can-reach(X3 ,X2 )