正在加载图片...
双线性函数定义设V是数域P上的n维线性空间,映射f:V×V→P为V上的二元函数.即对Vα,βeV,根据唯一地对应于p中一个数f(α,β),如果f(α,β)具有性质:(1) f(α,kβ +k,β,) = kf(α,β)+kf(α,β,)(2) f(k,α + k,α2,β) = k,f(α1,β)+ kzf(α2,β)其中 α,α,αz,β,β,β, eV,k,k, EP则 f(α,β)称为 V上的一个双线性函数$10.3双线性函数V§10.3 双线性函数 一、双线性函数 定义 设 V 是数域 P 上的 n 维线性空间,映射 f V V P :  → 为 V 上的二元函数. 即对    , , V 根据 f 唯一地对应于 P 中一个数 f ( , ) ,   如果 f ( , )   具有性质: 1 1 2 2 1 1 2 2 (1) ( , ) ( , ) ( , ) f k k k f k f        + = + 1 1 2 2 1 1 2 2 (2) ( , ) ( , ) ( , ) f k k k f k f        + = + 其中 1 2 1 2 1 2       , , , , , , ,   V k k P 则 f ( , )   称为 V上的一个双线性函数
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有