正在加载图片...
·116 工程科学学报,第43卷,第1期 更高相变温度和更高焓值的相变材料的微胶囊化 temperature inorganic phase change materials using graphite as 及其应用具有重要意义,如何以更简单的包覆方 heat transfer enhancer.Renew Energ,2019,133:240 法实现氟化物相变材料的高效包覆并解决其应用 [15]Liu M.Bell S,Segarra M,et al.A eutectic salt high temperature 问题,将是高温相变微胶囊的又一发展方向 phase change material:Thermal stability and corrosion of SS316 with respect to thermal cycling.Sol Energy Mater Sol Cells,2017, 参考文献 170:1 [1]Dresselhaus M S,Thomas I L.Alternative energy technologies. [16]Jiang Y F,Sun Y P,Bruno F,et al.Thermal stability of Na,CO;-Li-CO;as a high temperature phase change material for Nature,2001,414(6861):332 [2] Zalba B,Marin J M,Cabeza L F,et al.Review on thermal energy thermal energy storage.Thermochim Acta,2017,650:88 [17]Huang Z W,Xie N,Luo Z G,et al.Characterization of medium- storage with phase change:materials,heat transfer analysis and temperature phase change materials for solar thermal energy applications.Appl Therm Eng,2003,23(3):251 storage using temperature history method.Sol Energy Mater Sol [3] Tuncbilek K,Sari A,Tarhan S,et al.Lauric and palmitic acids Cel,2018,179:152 eutectic mixture as latent heat storage material for low temperature [18]Kenisarin MM.High-temperature phase change materials for heating applications.Energy,2005,30(5):677 thermal energy storage.Renew Sust Energ Rev,2010,14(3):955 [4] Tan FL.Tso C P.Cooling of mobile electronic devices using [19]Hoshi A,Mills D R.Bittar A,et al.Screening of high melting phase change materials.App/Therm Eng,2004,24(2-3):159 point phase change materials(PCM)in solar thermal concentrating [5] Mondal S.Phase change materials for smart textiles-an overview. technology based on CLFR.Sol Energy,2005,79(3):332 4ppl7 Therm Eng,2008,28(11-12:1536 [20]Nazir H,Batool M,Osorio F J B,et al.Recent developments in [6] Alva G,Lin Y X,Liu L K,et al.Synthesis,characterization and phase change materials for energy storage applications:a review applications of microencapsulated phase change materials in Int J Heat Mass Transfer,2019,129:491 thermal energy storage:a review.Energy Build,2017,144:276 [21]Nardin G,Meneghetti A,Dal Magro F,et al.PCM-based energy [7] Schossig P,Henning H M,Gschwander S,et al.Micro- recovery from electric arc fumaces.App/Energ,2014,136:947 encapsulated phase-change materials integrated into construction [22]Fukahori R,Nomura T,Zhu C Y,et al.Thermal analysis of Al-Si materials.Sol Energy Mater Sol Cells,2005,89(2-3):297 alloys as high-temperature phase-change material and their [8]Zhang XX,Tao X M,Yick K L,et al.Structure and thermal corrosion properties with ceramic materials.Appl Energ,2016, stability of microencapsulated phase change materials.Colloid 163:1 Polym Sci,,2004,282(4):330 [23]Sun J Q,Zhang R Y,Liu Z P,et al.Thermal reliability test of [9]Sari A,Alkan C,Karaipekli A,et al.Micro-encapsulated n- Al-34%Mg-6%Zn alloy as latent heat storage material and octacosane as phase change material for thermal energy storage. corrosion of metal with respect to thermal cycling.Energy Convers Sol Energy,2009,83(10:1757 Manage,2007,48(2):上619 [10]De Luca M,Ferraro MM,Hartmann R,et al.Advances in use of [24]Maruoka N,Akiyama T.Exergy recovery from steelmaking off- capsule-based fluorescent sensors for measuring acidification of gas by latent heat storage for methanol production.Energy,2006. endocytic compartments in cells with altered expression of V. 31(10-11):1632 ATPase subunitV G1.ACS Appl Mater Interfaces,2015,7(27): [25]Jiang Y F,Sun Y P,Liu M,et al.Eutectic Na2CO;-NaCl salt:a 15052 new phase change material for high temperature thermal storage. [11]Guo P J,Weimer M S,Emery J D,et al.Conformal coating of a Sol Energy Mater Sol Cells,2016,152:155 phase change material on ordered plasmonic nanorod arrays for [26]Jacob R,Liu M,Sun Y P,et al.Characterisation of promising broadband all-optical switching.ACS Nano,2017,11(1):693 phase change materials for high temperature thermal energy [12]Ling Z Y,Zhang Z G,Shi G Q,et al.Review on thermal storage.J Energy Storage,2019,24:100801 management systems using phase change materials for electronic [27]Misra A K,Whittenberger J D.Fluoride salts and container components,Li-ion batteries and photovoltaic modules.Renew materials for thermal energy storage applications in the Sust Energ Rev,2014,31:427 temperature range 973 to 1400 K /22nd Intersociery Energy [13]Xu B,Li P W,Chan C.Application of phase change materials for Conversion Engineering Conference.Philadelphia,Pennsylvania thermal energy storage in concentrated solar thermal power plants: 1987:188 a review to recent developments.App/Energ,2015,160:286 [28]Lund K O.Analysis of radiative and phase-change phenomena [14]Zhong Y J,Zhao B C,Lin J,et al.Encapsulation of high- with application to space-based thermal energy storage.NA.S4 Rep,更高相变温度和更高焓值的相变材料的微胶囊化 及其应用具有重要意义,如何以更简单的包覆方 法实现氟化物相变材料的高效包覆并解决其应用 问题,将是高温相变微胶囊的又一发展方向. 参    考    文    献 Dresselhaus  M  S,  Thomas  I  L.  Alternative  energy  technologies. Nature, 2001, 414(6861): 332 [1] Zalba B, Marin J M, Cabeza L F, et al. Review on thermal energy storage  with  phase  change:  materials,  heat  transfer  analysis  and applications. Appl Therm Eng, 2003, 23(3): 251 [2] Tuncbilek  K,  Sari  A,  Tarhan  S,  et  al.  Lauric  and  palmitic  acids eutectic mixture as latent heat storage material for low temperature heating applications. Energy, 2005, 30(5): 677 [3] Tan  F  L,  Tso  C  P.  Cooling  of  mobile  electronic  devices  using phase change materials. Appl Therm Eng, 2004, 24(2-3): 159 [4] Mondal S. Phase change materials for smart textiles–an overview. Appl Therm Eng, 2008, 28(11-12): 1536 [5] Alva G, Lin Y X, Liu L K, et al. Synthesis, characterization and applications  of  microencapsulated  phase  change  materials  in thermal energy storage: a review. Energy Build, 2017, 144: 276 [6] Schossig  P,  Henning  H  M,  Gschwander  S,  et  al.  Micro￾encapsulated  phase-change  materials  integrated  into  construction materials. Sol Energy Mater Sol Cells, 2005, 89(2-3): 297 [7] Zhang  X  X,  Tao  X  M,  Yick  K  L,  et  al.  Structure  and  thermal stability  of  microencapsulated  phase  change  materials. Colloid Polym Sci, 2004, 282(4): 330 [8] Sari  A,  Alkan  C,  Karaipekli  A,  et  al.  Micro-encapsulated  n￾octacosane  as  phase  change  material  for  thermal  energy  storage. Sol Energy, 2009, 83(10): 1757 [9] De Luca M, Ferraro M M, Hartmann R, et al. Advances in use of capsule-based  fluorescent  sensors  for  measuring  acidification  of endocytic  compartments  in  cells  with  altered  expression  of  V￾ATPase  subunitV1G1 . ACS Appl Mater Interfaces,  2015,  7(27): 15052 [10] Guo P J, Weimer M S, Emery J D, et al. Conformal coating of a phase  change  material  on  ordered  plasmonic  nanorod  arrays  for broadband all-optical switching. ACS Nano, 2017, 11(1): 693 [11] Ling  Z  Y,  Zhang  Z  G,  Shi  G  Q,  et  al.  Review  on  thermal management  systems  using  phase  change  materials  for  electronic components,  Li-ion  batteries  and  photovoltaic  modules. Renew Sust Energ Rev, 2014, 31: 427 [12] Xu B, Li P W, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energ, 2015, 160: 286 [13] [14] Zhong  Y  J,  Zhao  B  C,  Lin  J,  et  al.  Encapsulation  of  high￾temperature  inorganic  phase  change  materials  using  graphite  as heat transfer enhancer. Renew Energ, 2019, 133: 240 Liu M, Bell S, Segarra M, et al. A eutectic salt high temperature phase  change  material:  Thermal  stability  and  corrosion  of  SS316 with respect to thermal cycling. Sol Energy Mater Sol Cells, 2017, 170: 1 [15] Jiang  Y  F,  Sun  Y  P,  Bruno  F,  et  al.  Thermal  stability  of Na2CO3−Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim Acta, 2017, 650: 88 [16] Huang Z W, Xie N, Luo Z G, et al. Characterization of medium￾temperature  phase  change  materials  for  solar  thermal  energy storage  using  temperature  history  method. Sol Energy Mater Sol Cells, 2018, 179: 152 [17] Kenisarin  M  M.  High-temperature  phase  change  materials  for thermal energy storage. Renew Sust Energ Rev, 2010, 14(3): 955 [18] Hoshi  A,  Mills  D  R,  Bittar  A,  et  al.  Screening  of  high  melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol Energy, 2005, 79(3): 332 [19] Nazir  H,  Batool  M,  Osorio  F  J  B,  et  al.  Recent  developments  in phase change materials for energy storage applications: a review. Int J Heat Mass Transfer, 2019, 129: 491 [20] Nardin G, Meneghetti A, Dal Magro F, et al. PCM-based energy recovery from electric arc furnaces. Appl Energ, 2014, 136: 947 [21] Fukahori R, Nomura T, Zhu C Y, et al. Thermal analysis of Al–Si alloys  as  high-temperature  phase-change  material  and  their corrosion  properties  with  ceramic  materials. Appl Energ,  2016, 163: 1 [22] Sun  J  Q,  Zhang  R  Y,  Liu  Z  P,  et  al.  Thermal  reliability  test  of Al –34% Mg –6% Zn  alloy  as  latent  heat  storage  material  and corrosion of metal with respect to thermal cycling. Energy Convers Manage, 2007, 48(2): 619 [23] Maruoka  N,  Akiyama  T.  Exergy  recovery  from  steelmaking  off￾gas by latent heat storage for methanol production. Energy, 2006, 31(10-11): 1632 [24] Jiang Y F, Sun Y P, Liu M, et al. Eutectic Na2CO3–NaCl salt: a new  phase  change  material  for  high  temperature  thermal  storage. Sol Energy Mater Sol Cells, 2016, 152: 155 [25] Jacob  R,  Liu  M,  Sun  Y  P,  et  al.  Characterisation  of  promising phase  change  materials  for  high  temperature  thermal  energy storage. J Energy Storage, 2019, 24: 100801 [26] Misra  A  K,  Whittenberger  J  D.  Fluoride  salts  and  container materials  for  thermal  energy  storage  applications  in  the temperature  range  973  to  1400  K  //  22nd Intersociety Energy Conversion Engineering Conference.  Philadelphia,  Pennsylvania, 1987: 188 [27] Lund  K  O.  Analysis  of  radiative  and  phase-change  phenomena with application to space-based thermal energy storage. NASA Rep, [28] · 116 · 工程科学学报,第 43 卷,第 1 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有