่ฏๆy.d=6(s,y)=(s,d)=u.d Convergence property (Lemma 24.14) If suv is a shortest path in G for some u,vV,and if u.d 8(s,u)at any time prior to relaxing edge (u,v),then v.d =8(s,v)at all times afterward. ·y.d=6(s,y) Convergence property x.d=6(s,x) when x is added to S Edge (x,y)was relaxed y.d=6(s,y) Pๆฏsโuๆ็ญ่ทฏๅพ >p1+(xโy)ๆฏsโyๆ็ญ่ทฏๅพ y.d 8(s,y) โค 6(s,) y.d=6(s,y) P2 โค u.d =6(S,d) u.d u.dโคy.d Dijkstra็ฎๆณไฟ่ฏ่ฏๆ๐. ๐
= ๐น ๐, ๐ = ๐น ๐, ๐
= ๐. ๐
โข ๐. ๐
= ๐น ๐, ๐ when ๐ฅ is added to ๐บ ๐. ๐
= ๐น ๐, ๐ Edge ๐, ๐ was relaxed Pๆฏ๐ โ ๐ขๆ็ญ่ทฏๅพ ๐. ๐
= ๐น ๐, ๐ Convergence property ๐. ๐
= ๐น ๐, ๐ = ๐น ๐, ๐
= ๐. ๐
๐1 + (๐ฅ โ ๐ฆ)ๆฏ๐ โ ๐ฆๆ็ญ่ทฏๅพ Dijkstra็ฎๆณไฟ่ฏ