ๆญฃๅœจๅŠ ่ฝฝๅ›พ็‰‡...
่ฏๆ˜Žy.d=6(s,y)=(s,d)=u.d Convergence property (Lemma 24.14) If suv is a shortest path in G for some u,vV,and if u.d 8(s,u)at any time prior to relaxing edge (u,v),then v.d =8(s,v)at all times afterward. ·y.d=6(s,y) Convergence property x.d=6(s,x) when x is added to S Edge (x,y)was relaxed y.d=6(s,y) Pๆ˜ฏsโ†’uๆœ€็Ÿญ่ทฏๅพ„ >p1+(xโ†’y)ๆ˜ฏsโ†’yๆœ€็Ÿญ่ทฏๅพ„ y.d 8(s,y) โ‰ค 6(s,) y.d=6(s,y) P2 โ‰ค u.d =6(S,d) u.d u.dโ‰คy.d Dijkstra็ฎ—ๆณ•ไฟ่ฏ่ฏๆ˜Ž๐’š. ๐’… = ๐œน ๐’”, ๐’š = ๐œน ๐’”, ๐’… = ๐’–. ๐’… โ€ข ๐’š. ๐’… = ๐œน ๐’”, ๐’š when ๐‘ฅ is added to ๐‘บ ๐’™. ๐’… = ๐œน ๐’”, ๐’™ Edge ๐’™, ๐’š was relaxed Pๆ˜ฏ๐‘  โ†’ ๐‘ขๆœ€็Ÿญ่ทฏๅพ„ ๐’š. ๐’… = ๐œน ๐’”, ๐’š Convergence property ๐’š. ๐’… = ๐œน ๐’”, ๐’š = ๐œน ๐’”, ๐’… = ๐’–. ๐’… ๐‘1 + (๐‘ฅ โ†’ ๐‘ฆ)ๆ˜ฏ๐‘  โ†’ ๐‘ฆๆœ€็Ÿญ่ทฏๅพ„ Dijkstra็ฎ—ๆณ•ไฟ่ฏ
<<ๅ‘ไธŠ็ฟป้กตๅ‘ไธ‹็ฟป้กต>>
©2008-็Žฐๅœจ cucdc.com ้ซ˜็ญ‰ๆ•™่‚ฒ่ต„่ฎฏ็ฝ‘ ็‰ˆๆƒๆ‰€ๆœ‰