正在加载图片...
参考文献: [1]Hou Q,Tao Y,Jia J.Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging.Chinese Journal of Engineering,2019,41(02):209. (侯琼,陶宇,贾建.新型粉末高温合金多火次等温锻造过程中晶粒细化机制.工程科学学报,2019,41(02):209) [2]Chen K,Dong J X,Yao Z H.Creep Failure and Damage Mechanism of Inconel 718 Alloy at 800-900 C.Metals and Materials International,2019,27:970 [3]Cottura M,Appolaire B,Finel A.et al.Microstructure evolution under [110]creep in Ni-base superalloys.Acta Materialia,2021, 212:116851. [4]Liu C,Jiang H,Dong JX,et al.As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605.Chinese Journal of Engineering,2019,41(03):359. (刘超,江河,董建新,等.钴基高温合金GH5605铸态组织及高温扩散退火过程中元素再分配.工程科学学报,2019,41(03): 359) [5]Hou J,Dong J X,Yao Z H.Microscopic damage mechanisms during fatigue crack propagation a mperature in GH4169 superalloy.Chinese Journal of Engineering,2018,40(07):822. (侯杰,董建新,姚志浩.GH4169合金高温疲劳裂纹扩展的微观损伤机制.工程科学学报20840(07):822) [6]Wei K,Zhang Y,Wang T,et al.Investigations on correlation between grain size and stre upture property of GH4169 alloy Journal of Aeronautical Materials,2020,40(01):93. [7]Liu C,Tian S G,Wang X,et al.Microstructure and creep property of a GH4169 nickel-based superalloy.Journal of Materials Engineering,2017,45(06):43. (刘臣,田素贵,王欣,等.一种GH4169镍基合金的组织结构与蠕变性能材料工程,2017,45(06):43) [8]Asala G,Andersson J,Ojo OA.A study of the dynamic impact behaviour INTT8 and ATI 718Plus superalloys.Philosophical agazine,2019,99(4):419. [9]Hosseini E,Popovich V A.A review of mechanical properties dditively manufactured Inconel 718.Additive Manufacturing 2019.30:100877. [10]Qin H L,Bi Z N,Li D F,et al.Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy.Materials Science Engineering A,2019,742:493. [11]Shi J J,Zhou SA,Chen HH,et al.Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Materials Science Engineering A,2020,805:140583. [12]LiZ R,Tian S G,Zhao Z G,et al.Influence of hot continuous rolling on creep behaviors of GH4169 superalloy.The Chinese Journal of Nonferrous Metals,2011,21(07)/1541. (李振荣,田素贵,赵忠刚,等.热轧对G4169合金蠕变行为的影响.中国有色金属学报,2011,21(07八:1541) [13]Tian S G,Zhao Z G,Chen L Qet al Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy.Journal of Aeronautical Materials,2010,30 (05):14. (田素贵,赵忠刚,陈礼淇等,直接时效处理对热连轧GH4169合金蠕变行为的影响.航空材料学报,2010,30(05)14) [14]Hu X T.Ye W M.ZhangC,et al.Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses.Materials Science and Engineering:A,2021,800:140338. [15]Ruan JJ,Ueshima N Qikawa K.Growth behavior of the 8-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram.Journal ofAlloys&Compounds,2020,814:152289. [16]Xu Z,Cao LJ,Zhu Q,et al.Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Materials Science Engineering A.2020.794:139947. [17]You X G,Tan Y,Zhang H X.Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification.Scripta Materialia,2020,187:395. [18]Zheng Q Y,Chen Z Q,Yu X F,et al.Influence of solution treatment on creep of a new superalloy GH4169G.Chinese Journal of Materials Research,2013,27(04):444. (郑渠英,陈仲强,于兴福,等.固溶处理对GH4169G合金蠕变的影响.材料研究学报,2013,27(04):444) [19]LiZR,Ma CL,Tian S G,et al.Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated.Journal of Materials Science Engineering,2012,30(03):343. (李振荣,马春蕾,田素贵,等.固溶处理的热连轧GH4169合金的组织与蠕变特征.材料科学与工程学报,2012,30(03):参 考 文 献: [1] Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging. Chinese Journal of Engineering, 2019, 41(02): 209. (侯琼, 陶宇,贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制. 工程科学学报, 2019, 41(02): 209) [2] Chen K, Dong J X, Yao Z H. Creep Failure and Damage Mechanism of Inconel 718 Alloy at 800–900 °C. Metals and Materials International, 2019, 27: 970. [3] Cottura M, Appolaire B, Finel A. et al. Microstructure evolution under [110] creep in Ni-base superalloys. Acta Materialia, 2021, 212: 116851. [4] Liu C, Jiang H, Dong J X, et al. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605. Chinese Journal of Engineering, 2019, 41(03): 359. (刘超, 江河, 董建新, 等. 钴基高温合金 GH5605 铸态组织及高温扩散退火过程中元素再分配. 工程科学学报, 2019, 41(03): 359) [5] Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy. Chinese Journal of Engineering, 2018, 40(07): 822. (侯杰, 董建新, 姚志浩. GH4169 合金高温疲劳裂纹扩展的微观损伤机制. 工程科学学报, 2018, 40(07): 822) [6] Wei K, Zhang Y, Wang T, et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy. Journal of Aeronautical Materials, 2020, 40(01): 93. [7] Liu C, Tian S G, Wang X, et al. Microstructure and creep property of a GH4169 nickel-based superalloy. Journal of Materials Engineering, 2017, 45(06): 43. (刘臣, 田素贵, 王欣, 等. 一种 GH4169 镍基合金的组织结构与蠕变性能. 材料工程, 2017, 45(06): 43) [8] Asala G, Andersson J, Ojo O A. A study of the dynamic impact behaviour of IN718 and ATI 718Plus® superalloys. Philosophical Magazine, 2019, 99(4): 419. [9] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing, 2019, 30: 100877. [10] Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Materials Science & Engineering A, 2019, 742: 493. [11] Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Materials Science & Engineering A, 2020, 805:140583. [12] Li Z R, Tian S G, Zhao Z G, et al. Influence of hot continuous rolling on creep behaviors of GH4169 superalloy. The Chinese Journal of Nonferrous Metals, 2011, 21(07): 1541. (李振荣, 田素贵, 赵忠刚, 等. 热连轧对 GH4169 合金蠕变行为的影响. 中国有色金属学报, 2011, 21(07): 1541) [13] Tian S G, Zhao Z G, Chen L Q, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy. Journal of Aeronautical Materials, 2010, 30 (05): 14. (田素贵, 赵忠刚, 陈礼清, 等. 直接时效处理对热连轧 GH4169 合金蠕变行为的影响. 航空材料学报, 2010, 30(05): 14) [14] Hu X T, Ye W M, Zhang L C, et al. Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses. Materials Science and Engineering: A, 2021, 800: 140338. [15] Ruan J J, Ueshima N, Oikawa K. Growth behavior of the δ-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram. Journal of Alloys & Compounds, 2020, 814: 152289. [16] Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Materials Science & Engineering A, 2020, 794: 139947. [17] You X G, Tan Y, Zhang H X. Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification. Scripta Materialia, 2020, 187: 395. [18] Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G. Chinese Journal of Materials Research, 2013, 27(04): 444. (郑渠英, 陈仲强, 于兴福, 等. 固溶处理对 GH4169G 合金蠕变的影响. 材料研究学报, 2013, 27(04): 444) [19] Li Z R, Ma C L, Tian S G, et al. Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated. Journal of Materials Science & Engineering, 2012, 30(03): 343. (李振荣, 马春蕾, 田素贵,等. 固溶处理的热连轧 GH4169 合金的组织与蠕变特征. 材料科学与工程学报, 2012, 30(03): 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有