正在加载图片...
343) [20]Ni Z F,Xue F.High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel.Chinese Journal of Materials Research,2019,33(04):306 (倪自飞,薛烽.原位微米/纳米TC颗粒弥散强化304不锈钢的高温蠕变特性.材料研究学报,2019,33(04):306) [21]Zeng LY,QiYL,Hong Q,et al.Creep Behavior of Ti-600 Alloy Solutioned and Aged at a+B Region.Rare Metal Materials and Engineering,2014,43(11):2697 (曾立英,戚运莲,洪权,等.固溶时效处理Ti-600合金的蠕变行为研究.稀有金属材料与工程,2014,43(11):2697) [22]Kong Y H,Liu R Y,Wang F,et al.Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy.Rare Metal Materials and Engineering,2013,42(04):829. (孔永华,刘瑞毅,王飞,等.不同热处理的热连轧GH4169合金组织及抗蠕变性能研究.稀有金属材料与工程,2013,42(04): 829) [23]Tan H B,Sun Y L.Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology:1. (谭海波,孙亚利.热处理工艺对GH4169高温合金锻件组织与力学性能的影响.热加工艺 [24]Liu Y C,Zhang H J,Guo Q Y,et al.Microstructure Evolution of Inconel 718 Superalloy D位 Working and Its Recent Development Tendency.Acta Metallurgica Sinica,2018,54(11):1653 [25]Li HY,Kong Y H,Chen G S,et al.Effect of different processing technologies and heat treatm on the microstructure and creep behavior of GH4169 superalloy.Materials Science&Engineering A,2013,582:368 [26]Xu Z,Cao L J,Zhu Q,Guo C.Li X,Hu X G,Yu Z G.Creep property of Inconel 718superalloy produced by selective laser melting compared to forging.Materials Science Engineering A,2020,794:139947 [27]Martin D.Pei Z R.Kyle A,et al.Partitioning of tramp elements C and Si-in a Ni-based superalloy and their effect on creep properties.Materialia,2020.13:100843. [28]Chen K,Dong J X,Yao Z H,et al.Creep performance and damage mechanism for Allvac 718Plus superalloy.Materials Science Engineering A,2018,738:308. [29]Peng Z C.Zou J W,Yang J,et al.Influence of y'precipitate deformation and fracture during creep in PM nickel-based superalloy.Progress in Natural Science:Materials Internationa2021,31:303. 录用稿件343) [20] Ni Z F, Xue F. High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel. Chinese Journal of Materials Research, 2019, 33(04): 306. (倪自飞, 薛烽. 原位微米/纳米 TiC 颗粒弥散强化 304 不锈钢的高温蠕变特性. 材料研究学报, 2019, 33(04): 306) [21] Zeng L Y, Qi Y L, Hong Q, et al. Creep Behavior of Ti-600 Alloy Solutioned and Aged at α+β Region. Rare Metal Materials and Engineering, 2014, 43(11): 2697. (曾立英, 戚运莲, 洪权, 等. 固溶时效处理 Ti-600 合金的蠕变行为研究. 稀有金属材料与工程, 2014, 43(11): 2697) [22] Kong Y H, Liu R Y, Wang F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy. Rare Metal Materials and Engineering, 2013, 42(04): 829. (孔永华, 刘瑞毅, 王飞, 等. 不同热处理的热连轧 GH4169 合金组织及抗蠕变性能研究. 稀有金属材料与工程, 2013, 42(04): 829) [23] Tan H B, Sun Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology: 1. (谭海波, 孙亚利. 热处理工艺对 GH4169 高温合金锻件组织与力学性能的影响. 热加工工艺: 1) [24] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metallurgica Sinica, 2018, 54(11): 1653. [25] Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Materials Science & Engineering A, 2013, 582: 368. [26] Xu Z, Cao L J, Zhu Q, Guo C, Li X, Hu X G, Yu Z G. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Materials Science & Engineering A, 2020, 794:139947. [27] Martin D, Pei Z R, Kyle A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties. Materialia, 2020, 13: 100843. [28] Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy. Materials Science & Engineering A, 2018, 738: 308. [29] Peng Z C, Zou J W, Yang J, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Progress in Natural Science: Materials International, 2021, 31: 303. 录用稿件,非最终出版稿
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有