正在加载图片...
D0L:10.13374.issn1001-053x.2013.06.018 第35卷第6期 北京科技大学学报 Vol.35 No.6 2013年6月 Journal of University of Science and Technology Beijing Jun.2013 基于动载荷谱的齿轮弯曲疲劳寿命预测 俞必强,李威四,薛建华,蒋磊 北京科技大学机械工程学院,北京100083 ☒通信作者,E-mail:liweiustbe@sina.com 摘要为了探讨齿轮弯曲疲劳寿命计算问题,将齿轮疲劳总寿命分为两个阶段,即疲劳裂纹萌生寿命和裂纹扩展寿 命.通过ADAMS软件仿真实验齿轮的工作情况,使其接近真实状况,得到齿轮载荷谱.根据齿轮载荷谱,利用有限元 ANSYS软件分析在齿轮齿根危险截面处的最大应力.采用断裂力学、雨流法和Min©r疲劳损伤累积模型,对考虑动载 荷情况下的齿轮弯曲疲劳寿命进行预测,推导了齿根裂纹萌生期和扩展期的疲劳寿命计算公式.在高频疲劳试验机上对 算例齿轮进行了双齿脉动加载齿根弯曲疲劳寿命实验研究,理论计算结果与实验结果基本吻合,验证了本文理论分析的 正确性. 关键词齿轮传动:动载荷:裂纹萌生:裂纹扩展:疲劳损伤:使用寿命 分类号TH132.4 Prediction of bending fatigue life for gears based on dynamic load spectra YUBi-qiang,LI Wei☒,XUE Jiar-hua,JIANG Lei School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China Corresponding author,E-mail:liweiustb@sina.com ABSTRACT To calculate the bending fatigue life of gears,the fatigue process was divided into crack initiation and crack propagation periods.The real working condition of gears was imitated with ADAMS software and a loading spectrum during the work process was gained.According to the loading spectrum the maximum stress in the dangerous cross-section of the gear root was analyzed by the finite element method based on ANSYS software.Fracture mechanics, the rain flow counting method,and the Miner fatigue cumulative damage model were used to predict the bending fatigue life of gears under the dynamic load,and two calculation models of bending fatigue life were proposed for crack initiation and crack propagation,respectively.To verify the calculation models,bending fatigue testing was performed on a high- frequency fatigue testing machine.The experimental data comply with the numerical simulation results,indicating the correctness of the theoretical analysis. KEY WORDS gear transmission;dynamic loads;crack initiation;crack propagation;fatigue damage;service life 在现代工业生产中,齿轮传动是最常见也是强度有了很大提高,齿面抗点蚀胶合能力也得到增 应用最为广泛的传动形式之一四,它具有传动效 强,因此齿轮的主要失效形式表现为齿根弯曲疲劳 率高、工作可靠、结构紧凑、寿命长、传动比准 断裂10-12).对于齿轮在设计时往往要求在满足使 确、功率及速度适应范围广等特点2-).齿轮常 用条件的要求下,能够有高承载能力、高性能、高 见的失效形式有齿面点蚀疲劳和齿根弯曲疲劳.近 强度、高可靠性以及相对较低的成本,所以就需要 年来,随着表面处理技术的迅速发展,如表面热处 创建合理的计算模型来预测齿轮疲劳寿命.齿 理、表面强化和激光处理技术6-,齿轮齿面的 根疲劳过程包括疲劳裂纹萌生、疲劳裂纹扩展和裂 收稿日期:2012-03-10 基金项目:国家自然科学基金资助项目(51275035)第 35 卷 第 6 期 北 京 科 技 大 学 学 报 Vol. 35 No. 6 2013 年 6 月 Journal of University of Science and Technology Beijing Jun. 2013 基于动载荷谱的齿轮弯曲疲劳寿命预测 俞必强,李 威 ,薛建华,蒋 磊 北京科技大学机械工程学院,北京 100083 通信作者,E-mail: liweiustb@sina.com 摘 要 为了探讨齿轮弯曲疲劳寿命计算问题,将齿轮疲劳总寿命分为两个阶段,即疲劳裂纹萌生寿命和裂纹扩展寿 命. 通过 ADAMS 软件仿真实验齿轮的工作情况,使其接近真实状况,得到齿轮载荷谱. 根据齿轮载荷谱,利用有限元 ANSYS 软件分析在齿轮齿根危险截面处的最大应力. 采用断裂力学、雨流法和 Miner 疲劳损伤累积模型,对考虑动载 荷情况下的齿轮弯曲疲劳寿命进行预测,推导了齿根裂纹萌生期和扩展期的疲劳寿命计算公式. 在高频疲劳试验机上对 算例齿轮进行了双齿脉动加载齿根弯曲疲劳寿命实验研究,理论计算结果与实验结果基本吻合,验证了本文理论分析的 正确性. 关键词 齿轮传动;动载荷;裂纹萌生;裂纹扩展;疲劳损伤;使用寿命 分类号 TH132.4 Prediction of bending fatigue life for gears based on dynamic load spectra YU Bi-qiang, LI Wei , XUE Jian-hua, JIANG Lei School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China Corresponding author, E-mail: liweiustb@sina.com ABSTRACT To calculate the bending fatigue life of gears, the fatigue process was divided into crack initiation and crack propagation periods. The real working condition of gears was imitated with ADAMS software and a loading spectrum during the work process was gained. According to the loading spectrum the maximum stress in the dangerous cross-section of the gear root was analyzed by the finite element method based on ANSYS software. Fracture mechanics, the rain flow counting method, and the Miner fatigue cumulative damage model were used to predict the bending fatigue life of gears under the dynamic load, and two calculation models of bending fatigue life were proposed for crack initiation and crack propagation, respectively. To verify the calculation models, bending fatigue testing was performed on a high￾frequency fatigue testing machine. The experimental data comply with the numerical simulation results, indicating the correctness of the theoretical analysis. KEY WORDS gear transmission; dynamic loads; crack initiation; crack propagation; fatigue damage; service life 在现代工业生产中,齿轮传动是最常见也是 应用最为广泛的传动形式之一 [1],它具有传动效 率高、工作可靠、结构紧凑、寿命长、传动比准 确、功率及速度适应范围广等特点 [2−5] . 齿轮常 见的失效形式有齿面点蚀疲劳和齿根弯曲疲劳. 近 年来,随着表面处理技术的迅速发展,如表面热处 理、表面强化和激光处理技术 [6−9],齿轮齿面的 强度有了很大提高,齿面抗点蚀胶合能力也得到增 强,因此齿轮的主要失效形式表现为齿根弯曲疲劳 断裂 [10−12] . 对于齿轮在设计时往往要求在满足使 用条件的要求下,能够有高承载能力、高性能、高 强度、高可靠性以及相对较低的成本,所以就需要 创建合理的计算模型来预测齿轮疲劳寿命 [13] . 齿 根疲劳过程包括疲劳裂纹萌生、疲劳裂纹扩展和裂 收稿日期:2012–03–10 基金项目:国家自然科学基金资助项目 (51275035) DOI:10.13374/j.issn1001-053x.2013.06.018
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有