定理1设∫(x),F(x)在点a的某去心领域内可导,F(x)≠0 并且满足条件 (1)lim f(x)=lim F(x)=0; 0(2)极限im< x→a 或为 x→aF(x 那么,极限im f(x) 存在,并且 x→aF(x) f(x lin x少0F(x)x→aF(x) 下定理1 设 f (x),F (x)在点a的某去心领域内可导, 并且满足条件: F x ′( ) ≠ 0 ⑴ lim ( ) lim ( ) 0; x a x a f x F x → → = = ⑵极限 或为∞, ( ) lim ( ) x a f x → F x ′′ 那么,极限 存在,并且 ( ) ( ) lim lim . ( ) ( ) x a x a f x f x → → F x F x ′ = ′ ( ) lim ( ) x a f x → F x