正在加载图片...
Methods of Mathematical Physics(2016.10) YLMa a Phys. FDU Chapter 6 Laplace Transform History of Integral Transforms 计算在任何时候都是数学之核心。人们发明了很多符号来简化运算,例如 ∑,∫,和等。莱布尼兹可算是符号演算的鼻祖。十八、九世纪,求解微积 分方程是数学、物理学家面临的重要任务 1862年,俄数学家瓦申科-扎哈尔钦科创造了一种符号算法解线性微分方程。 1890年左右,英电气工程师亥维赛采用符号法计算了大量的微分方程,他将 微分看做“乘法”d 0(x)=p(x),(x)=po(x),将积分看做“除法 「o55=10),y=(x,以及11=1x 例如,求解y-y=1,y(0)=0 5d= n!n+1 他用此法解了大量的微积分方程,包括一些当时人们认为几乎不可能解决的问 题,这使职业数学家大为吃惊,责难他的方法毫无根据。他对此不睬,并推广此 法去解一些偏微分方程。不过他也的确由于没有根据地滥用此法,出过一些错误。 二十世纪,布朗威奇、长松、杰弗里斯、德挈等人对符号法进行了深入的研 究,找到了他的数学根据。原来符号法与一百年前 Laplace引进的积分变换是一 脉相通的,符号法是 Laplace变换的特殊情形。从此肯定了符号法是解微分方程 的一种方法,并称之为运算微积或算符演算。 1782年, Laplace研究概率论时得到一种特殊形式的积分, ∫eo(x)x=列(p):ox)→列(p)这种变换以及逆变换很多人研究过 8年,泊松得到以)=1丁“列P地这是 Riemann-Mellin变换Methods of Mathematical Physics (2016.10) Chapter 6 Laplace transform and delta function YLMa@Phys.FDU 1 Chapter 6 Laplace Transform History of Integral Transforms 计算在任何时候都是数学之核心。人们发明了很多符号来简化运算,例如  , ,  和 d dx 等。莱布尼兹可算是符号演算的鼻祖。十八、九世纪,求解微积 分方程是数学、物理学家面临的重要任务。 1862 年,俄数学家瓦申科--扎哈尔钦科创造了一种符号算法解线性微分方程。 1890 年左右,英电气工程师亥维赛采用符号法计算了大量的微分方程,他将 微分看做“乘法”: d ( ) ( ) d x p x x    , n d ( ) ( ) d n n x p x x    ,将积分看做“除法”: 0 1 ( )d ( ) x x p       , 0 0 1 ( )(d ) ( ) x x n n x p        ,以及 1 1 1 . ! n n x p n   例如,求解 y y y ' 1, (0) 0.    0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 ( 1) 1 1 1 1 1 1 1 1 1 d 1. ! ! ! 1 ( 1)! n n x n n n n x n n n n py y y p p p p p x x x e p n n n n n                                       他用此法解了大量的微积分方程,包括一些当时人们认为几乎不可能解决的问 题,这使职业数学家大为吃惊,责难他的方法毫无根据。他对此不睬,并推广此 法去解一些偏微分方程。不过他也的确由于没有根据地滥用此法,出过一些错误。 二十世纪,布朗威奇、长松、杰弗里斯、德挈等人对符号法进行了深入的研 究,找到了他的数学根据。原来符号法与一百年前 Laplace 引进的积分变换是一 脉相通的,符号法是 Laplace 变换的特殊情形。从此肯定了符号法是解微分方程 的一种方法,并称之为运算微积或算符演算。 1782 年 , Laplace 研 究 概 率 论 时 得 到 一 种 特 殊 形 式 的 积 分 , 0 ( )d ( ) : px e x x p         ( ) ( ). x p  这种变换以及逆变换很多人研究过。 1823 年,泊松得到 1 ( ) ( )d , 2 a i px a i x e p p i          这是 Riemann-Mellin 变换
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有