正在加载图片...
肖鹏程等:超低碳钢连铸坯钩状坯壳的演变与夹杂物的捕集 ·1073· 由图13(a)可见,随着夹杂物尺寸的增加,夹杂物受 4]Kumar A,Choudhary S K,Ajmani S K.Distribution of macroin- 力持续增大.但是不同尺寸夹杂物受力方向存在较 clusions across slab thickness.IS//Int,2012,52(12)2305 [5] Deng XX,Ji C X,Dong W L,et al.Distribution of macro-inclu- 为显著的差异.由图13(b)可见,夹杂物受合力与 sions in low carbon aluminium-killed steel slabs./ronmak Steel- 水平分力夹角0的正切值随夹杂物的尺寸的增加发 mak,2017(7),https:/1doi.org/10.1080/03019233.2017. 生了较大的变化.。当tan0>1,夹杂物趋于朝向凝固 1305676 前沿的方向运动.当tan0<1,夹杂物趋于沿着凝固 Wang M,Bao Y P,Cui H,et al.Surface cleanliness evaluation in 前沿平行运动.由此据图13(b)可知,在没有凝固 Ti stabilised ultralow carbon (Ti-IF)steel.fronmak Steelmak, 钩的坯壳区域,由于其凝固前沿呈垂直走向,大尺寸 2011,38(5):386 7] (>100um)夹杂物不容易被坯壳捕集,小尺寸夹杂 Emi T.Influence of physical and chemical properties of mold pow- ders on the solidification and occurrence of surface defects of strand 物容易被捕集. cast slabs.Steelmaking Proceedings,1978,61:350 4结论 Tomono H,Kurz W,Heinemann W.The liquid steel meniscus in molds and its relevance to the surface quality of castings.Metall (1)钢液在弯月面形成初生凝固钩后随坯壳下 Trans B,1981,12(2):409 行的过程中,不会立刻埋没进入钢液,而是要经历熔 9]Fredriksson H,Elfsberg J.Thoughts about the initial solidification process during continuous casting of steel.Scand J Metall,2002, 化、变粗、生长、湮没等过程.拉速1.3mmin条件 31(5):292 下最终湮没存留在坯壳中的凝固钩深度约为2.5 [10] Sengupta J,Thomas B G,Shin HJ,et al.Mechanism of hook mm.模拟计算揭示了凝固钩的演变过程,其形貌特 formation in ultralow-carbon steel based on microscopy analysis 征与普通铸坯表层和漏钢坯壳的金相形貌特征较为 and thermal-stress modeling.Iron Steel Technol,2007,4(7): 吻合. 83 (2)初生凝固钩下表面最容易捕获夹杂物.第 [11]Sengupta J,Shin H J,Thomas B G,et al.Micrograph evidence of meniscus solidification and sub-surface microstructure evolution 2道及以后的凝固钩,仍然存在捕集夹杂物的行为, in continuous-east ultralow-carbon steels.Acta Mater,2006,54 但几率减小.凝固钩的存在不仅增大了夹杂物上浮 (4):1165 过程中遭遇的坯壳拦截面积,还对附近的钢液的流 [12]Takeuchi E,Brimacombe J K.Effect of oscillation-mark forma- 动构成了拦截和扰动.这使得夹杂物上浮过程容易 tion on the surface quality of continuously cast steel slabs.Metall 在凝固钩附近发生回旋运动,增大了夹杂物与凝固 Trans B,1985,16(3):605 前沿相伴运行的行程,使夹杂物被坯壳表层捕获的 [13]Yasunaka H,Yamanaka R,Inoue T,et al.Pinhole and inclu- sion defects formed at the subsurface in ultra low carbon steel. 几率加大. Tetsu-o-Hagane,1995,81(5):529 (3)夹杂物在凝固钩区域不同位置受力分析表 04]Yang W,Xu Z G,Xue Y Q,et al.Structure characteristic of 明,夹杂物在凝固钩下表面受到的指向凝固前沿的 subsurface hooks in continuous cast LCAK steel head slabs.J 合力最大,溢流区的夹杂物受力次之,造成夹杂物在 Univ Sci Technol Beijing,2011,33(11):1341 这两个区域最容易被坯壳捕获;最不容易捕捉夹杂 (杨文,许志刚,薛勇强,等.LCAK钢连铸头坯亚表层hook 结构特征.北京科技大学学报,2011,33(11):1341) 物的位置是凝固钩上表面,夹杂物在此区域受到的 [15]Zhang X B,Zhang L F,Wang H,et al.Subsurface hooks in 合力最小:在没有凝固钩的坯壳的垂直面,容易捕集 continuous casting slabs of low-carbon steel.Chin Eng,2017, 尺寸小于100m的夹杂物,不容易捕集大尺寸夹 39(2):251 杂物. (张旭彬,张立峰,王皓,等。低碳钢连铸板坯表层凝固钩的 特征.工程科学学报,2017,39(2):251) [16]Pfeiler C,Thomas BG,Wu M,et al.Solidification and particle 参考文献 entrapment during continuous casting of steel.Steel Res Int, [Qin Y M,Wang X H,Huang F X,et al.Influence of reoxidation 2008,79(8):599 by slag and air on inclusions in IF steel.Metall Res Technol, [17]Yuan P,Deng XX,Jiang M,et al.Investigation of subsurface 2015,112(4):405 hooks in continuous cast low carbon aluminum-illed steel slab. Wang M,Bao Y P,Zhao L H,et al.Distribution and detriment of Iron Steel,2015,50(8):24 bubbles in continuous casting interstitial free steel slab.IS//Int, (苑鹏,邓小旋,姜敏,等.低碳铝镇静钢铸坯皮下钩状坯 2015,55(4):799 壳.钢铁,2015,50(8):24) B]Hanao M,Kawamoto M,Yamanaka A.Growth of solidified shell [18]Bottger B.Apel M,Santillana B,et al.Phase-field modelling of just below the meniscus in continuous casting mold.IS/Int, microstructure formation during the solidification of continuously 2009,49(3):365 cast low carbon and HSLA steels /IOP Conference Series:Mate-肖鹏程等: 超低碳钢连铸坯钩状坯壳的演变与夹杂物的捕集 由图 13( a) 可见,随着夹杂物尺寸的增加,夹杂物受 力持续增大. 但是不同尺寸夹杂物受力方向存在较 为显著的差异. 由图 13( b) 可见,夹杂物受合力与 水平分力夹角 θ 的正切值随夹杂物的尺寸的增加发 生了较大的变化. 当 tanθ > 1,夹杂物趋于朝向凝固 前沿的方向运动. 当 tanθ < 1,夹杂物趋于沿着凝固 前沿平行运动. 由此据图 13( b) 可知,在没有凝固 钩的坯壳区域,由于其凝固前沿呈垂直走向,大尺寸 ( > 100 μm) 夹杂物不容易被坯壳捕集,小尺寸夹杂 物容易被捕集. 4 结论 ( 1) 钢液在弯月面形成初生凝固钩后随坯壳下 行的过程中,不会立刻埋没进入钢液,而是要经历熔 化、变粗、生长、湮没等过程. 拉速 1. 3 m·min - 1条件 下最终湮没存留在坯壳中的凝固钩深度约为 2. 5 mm. 模拟计算揭示了凝固钩的演变过程,其形貌特 征与普通铸坯表层和漏钢坯壳的金相形貌特征较为 吻合. ( 2) 初生凝固钩下表面最容易捕获夹杂物. 第 2 道及以后的凝固钩,仍然存在捕集夹杂物的行为, 但几率减小. 凝固钩的存在不仅增大了夹杂物上浮 过程中遭遇的坯壳拦截面积,还对附近的钢液的流 动构成了拦截和扰动. 这使得夹杂物上浮过程容易 在凝固钩附近发生回旋运动,增大了夹杂物与凝固 前沿相伴运行的行程,使夹杂物被坯壳表层捕获的 几率加大. ( 3) 夹杂物在凝固钩区域不同位置受力分析表 明,夹杂物在凝固钩下表面受到的指向凝固前沿的 合力最大,溢流区的夹杂物受力次之,造成夹杂物在 这两个区域最容易被坯壳捕获; 最不容易捕捉夹杂 物的位置是凝固钩上表面,夹杂物在此区域受到的 合力最小; 在没有凝固钩的坯壳的垂直面,容易捕集 尺寸小于 100 μm 的夹杂物,不容易捕集大尺寸夹 杂物. 参 考 文 献 [1] Qin Y M,Wang X H,Huang F X,et al. Influence of reoxidation by slag and air on inclusions in IF steel. Metall Res Technol, 2015,112( 4) : 405 [2] Wang M,Bao Y P,Zhao L H,et al. Distribution and detriment of bubbles in continuous casting interstitial free steel slab. ISIJ Int, 2015,55( 4) : 799 [3] Hanao M,Kawamoto M,Yamanaka A. Growth of solidified shell just below the meniscus in continuous casting mold. ISIJ Int, 2009,49( 3) : 365 [4] Kumar A,Choudhary S K,Ajmani S K. Distribution of macroin￾clusions across slab thickness. ISIJ Int,2012,52( 12) : 2305 [5] Deng X X,Ji C X,Dong W L,et al. Distribution of macro-inclu￾sions in low carbon aluminium-killed steel slabs. Ironmak Steel￾mak,2017 ( 7 ) ,https: / / doi. org /10. 1080 /03019233. 2017. 1305676 [6] Wang M,Bao Y P,Cui H,et al. Surface cleanliness evaluation in Ti stabilised ultralow carbon ( Ti--IF) steel. Ironmak Steelmak, 2011,38( 5) : 386 [7] Emi T. Influence of physical and chemical properties of mold pow￾ders on the solidification and occurrence of surface defects of strand cast slabs. Steelmaking Proceedings,1978,61: 350 [8] Tomono H,Kurz W,Heinemann W. The liquid steel meniscus in molds and its relevance to the surface quality of castings. Metall Trans B,1981,12( 2) : 409 [9] Fredriksson H,Elfsberg J. Thoughts about the initial solidification process during continuous casting of steel. Scand J Metall,2002, 31( 5) : 292 [10] Sengupta J,Thomas B G,Shin H J,et al. Mechanism of hook formation in ultralow-carbon steel based on microscopy analysis and thermal-stress modeling. Iron Steel Technol,2007,4 ( 7) : 83 [11] Sengupta J,Shin H J,Thomas B G,et al. Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels. Acta Mater,2006,54 ( 4) : 1165 [12] Takeuchi E,Brimacombe J K. Effect of oscillation-mark forma￾tion on the surface quality of continuously cast steel slabs. Metall Trans B,1985,16( 3) : 605 [13] Yasunaka H,Yamanaka R,Inoue T,et al. Pinhole and inclu￾sion defects formed at the subsurface in ultra low carbon steel. Tetsu-to-Hagané,1995,81( 5) : 529 [14] Yang W,Xu Z G,Xue Y Q,et al. Structure characteristic of subsurface hooks in continuous cast LCAK steel head slabs. J Univ Sci Technol Beijing,2011,33( 11) : 1341 ( 杨文,许志刚,薛勇强,等. LCAK 钢连铸头坯亚表层 hook 结构特征. 北京科技大学学报,2011,33( 11) : 1341) [15] Zhang X B,Zhang L F,Wang H,et al. Subsurface hooks in continuous casting slabs of low-carbon steel. Chin J Eng,2017, 39( 2) : 251 ( 张旭彬,张立峰,王皓,等. 低碳钢连铸板坯表层凝固钩的 特征. 工程科学学报,2017,39( 2) : 251) [16] Pfeiler C,Thomas B G,Wu M,et al. Solidification and particle entrapment during continuous casting of steel. Steel Res Int, 2008,79( 8) : 599 [17] Yuan P,Deng X X,Jiang M,et al. Investigation of subsurface hooks in continuous cast low carbon aluminum-killed steel slab. Iron Steel,2015,50( 8) : 24 ( 苑鹏,邓小旋,姜敏,等. 低碳铝镇静钢铸坯皮下钩状坯 壳. 钢铁,2015,50( 8) : 24) [18] Bttger B,Apel M,Santillana B,et al. Phase-field modelling of microstructure formation during the solidification of continuously cast low carbon and HSLA steels / / IOP Conference Series: Mate- · 3701 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有