正在加载图片...
建筑物不宜忽视次固结沉降S3。 S3可按下式计算 S,=∑ (6-11) 图6-2次固结沉降图 式中:Ca—第i层土的次固结系数,可由在固结压力下试验的e-lgt曲线如图62示求取 其值与粒径、矿物成分有关,一般Ca=0.005~0.03 e2i一第i层软土在固结压力下完成排水固结时的孔隙比; t2、ts一完成固结(固结度为100%)时间和计算次固结沉降的时间,t>t。 由于对软土的次固结性状仍了解不够,无论对于它的机理、变化规律、影响因素、计算 方法和试验测定等都有待进一步深入探讨。 软土地基沉降量S还可以利用观察到的建筑物的若干随时间(t、t等)变化的沉降值S1 Sa、St-t关系等,推算该建筑物的后期沉降S:及最终沉降S。常用的推算方法是将实测 的沉降一时间(S:一t曲线拟合为指数曲线、双曲线等而用数学方法推算S1或S。。具体详见 土力学教材。 综上所述,软土地基的沉降应为上述三种沉降之和,即S=S+S+S,但是由 于瞬时沉降和次固结沉降的计算方法和理论还处于初步阶段,故工程上也常用将一维固结沉 降计算的结果乘以一个沉降计算经验的修正系数ms计算 S (6-12) 在《公桥基规》规定:当软土压缩模量Es=1.0~40MPa时,m=1.8-1.1,以提高其计 算精度。由于软土地基沉降的复杂性,ms的取值尚待补充完善 (三)软土地基的稳定性分析 分析软土地基上建筑物承受水平推力后,由于地基土抗剪强度低,发生基础连同部分地 基土在土中剪切滑移失稳的可能性。在软土地基上桥台、挡土墙等承受侧向推力的建筑物在 保证其地基承载力、沉降验算。同时,应进行稳定性的分析。对于桩基础,假定的滑动弧面 可认为发生在桩底以上如图6-3所示(只有软土层很厚而桩长又很短时才发生在桩底以 但此仅是特例),由于在设计中考虑承台底以上全部外力均由基桩承担,所以分析时可以不 计这部分外力作用于滑动弧面上的分力,只考虑承台底面到滑动弧面以上土柱重,即在图 6-3中对P、M不应计入其影响,而阴形部分土的重力 应计入其影响。不属于基桩承 担的滑裂体范围内的荷载仍应建筑物不宜忽视次固结沉降 Ss。 Ss 可按下式计算: i n i i ai s h t t e C S         + = = 2 3 1 2 lg 1 (6-11) 图 6-2 次固结沉降图 式中:Cai—第 i 层土的次固结系数,可由在固结压力下试验的 e-lgt 曲线如图 6-2 示求取。 其值与粒径、矿物成分有关,一般 Cai=0.005~0.03; e2i—第 i 层软土在固结压力下完成排水固结时的孔隙比; t2、t3—完成固结(固结度为 100%)时间和计算次固结沉降的时间,t3>t2。 由于对软土的次固结性状仍了解不够,无论对于它的机理、变化规律、影响因素、计算 方法和试验测定等都有待进一步深入探讨。 软土地基沉降量 S 还可以利用观察到的建筑物的若干随时间(t1、t2 等)变化的沉降值 Stl、 St2、St 一 t 关系等,推算该建筑物的后期沉降 St 及最终沉降  S 。常用的推算方法是将实测 的沉降一时间(St 一 t)曲线拟合为指数曲线、双曲线等而用数学方法推算 St 或  S 。具体详见 土力学教材。 综上所述,软土地基的沉降应为上述三种沉降之和,即 S = Sd + Sc + Ss ,但是由 于瞬时沉降和次固结沉降的计算方法和理论还处于初步阶段,故工程上也常用将一维固结沉 降计算的结果乘以一个沉降计算经验的修正系数 ms 计算 S = msSc (6-12) 在《公桥基规》规定:当软土压缩模量 Es=1.0~4.0MPa 时,ms=1.8~1.1,以提高其计 算精度。由于软土地基沉降的复杂性,ms 的取值尚待补充完善。 (三)软土地基的稳定性分析 分析软土地基上建筑物承受水平推力后,由于地基土抗剪强度低,发生基础连同部分地 基土在土中剪切滑移失稳的可能性。在软土地基上桥台、挡土墙等承受侧向推力的建筑物在 保证其地基承载力、沉降验算。同时,应进行稳定性的分析。对于桩基础,假定的滑动弧面 可认为发生在桩底以上如图 6-3 所示(只有软土层很厚而桩长又很短时才发生在桩底以下, 但此仅是特例),由于在设计中考虑承台底以上全部外力均由基桩承担,所以分析时可以不 计这部分外力作用于滑动弧面上的分力,只考虑承台底面到滑动弧面以上土柱重,即在图 6-3 中对 P、M 不应计入其影响,而阴形部分土的重力 应计入其影响。不属于基桩承 担的滑裂体范围内的荷载仍应 图 6-3 桩基稳定性分析示意图
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有