第一节概述 土木工程建设中,有时不可避免地遇到工程地质条件不良的软弱土地基,不能满足建筑 物要求,需要先经过人工处理加固,再建造基础,处理后的地基称为人工地基。 地基处理的目的是针对软土地基上建造建筑物可能产生的问题,采取人工的方法改善地 基土的工程性质,达到满足上部结构对地基稳定和变形的要求,这些方法主要包括提高地基 土的抗剪强度,增大地基承载力,防止剪切破坏或减轻土压力:改善地基土压缩特性,减少 沉降和不均匀沉降:改善其渗透性,加速固结沉降过程:改善土的动力特性防止液化,减轻 振动:消除或减少特殊土的不良工程特性(如黄土的湿陷性,膨胀土的膨胀性等)。 近几十年来,大量的土木工程实践推动了软弱土地基处理技术的迅速发展,地基处理的 方法多样化,地基处理的新技术、新理论不断涌现并日趋完善,地基处理已成为基础工程领 域中一个较有生命力的分枝。根据地基处理方法的基本原理,基本上可以分为如表6-1所示 的几类 地蕃处理方法的分类 表6-1 勿理处理 化学处理 热学处理 置换排水|挤密加筋 但必须指出,很多地基处理方法具有多重加固处理的功能,例如碎石桩具有置换、挤密 排水和加筋的多重功能;而石灰桩则具有挤密、吸水和置换等功能。地基处理的主要方法、 适用范围及加固原理,参见表6-2 地基处理的主要方法、适用范围和加固原理 表6-2 分类 方法 加固原理 适用范围 换土垫层法采用开挖后换好土回填的方法:对于厚度较小的淤泥质各种浅层的软弱土地基 土层,亦可采用抛石挤淤法。地基浅层性能良好的垫层 与下卧层形成双层地基。垫层可有效地扩散基底压力 提高地基承载力和减少沉降量。 振冲置换法利用振冲器在高压水的作用下边振、边冲,在地基中成c<20Pa的粘性土、松散 孔,在孔内回填碎石料且振密成碎石桩。碎石桩柱体与粉土和人工填土、湿陷性 桩间土形成复合地基,提高承载力,减少沉降量 黄土地基等 强夯置换法采用强夯时,夯坑内回填块石、碎石挤淤置换的方法,浅层软弱土层较薄的地 形成碎石墩柱体,以提高地基承载力和减少沉降量。基 置 换|碎石桩法 采用沉管法或其他技术,在软土中设置砂或碎石桩柱一般软土地基 体,置换后形成复合地基,可提高地基承载力,降低地 基沉降。同时,砂、石柱体在软粘土中形成排水通道, 加速固结 石灰桩法在软弱土中成孔后,填入生石灰或其他混合料,形成竖人工填土、软土地基 向石灰桩柱体,通过生石灰的吸水膨胀、放热以及离子 交换作用改善桩柱体周围土体的性质,形成石灰桩复合 地基,以提高地基承载力,减少沉降量 ES轻填法发泡聚苯乙烯(EPS)重度只有土的150-1/0,并具软弱土地基上的填方工 有较高的强度和低压缩性,用于填土料,可有效减少作程 用于地基的荷载,且根据需要用于地基的浅层置换
第一节 概 述 土木工程建设中,有时不可避免地遇到工程地质条件不良的软弱土地基,不能满足建筑 物要求,需要先经过人工处理加固,再建造基础,处理后的地基称为人工地基。 地基处理的目的是针对软土地基上建造建筑物可能产生的问题,采取人工的方法改善地 基土的工程性质,达到满足上部结构对地基稳定和变形的要求,这些方法主要包括提高地基 土的抗剪强度,增大地基承载力,防止剪切破坏或减轻土压力;改善地基土压缩特性,减少 沉降和不均匀沉降:改善其渗透性,加速固结沉降过程;改善土的动力特性防止液化,减轻 振动;消除或减少特殊土的不良工程特性(如黄土的湿陷性,膨胀土的膨胀性等)。 近几十年来,大量的土木工程实践推动了软弱土地基处理技术的迅速发展,地基处理的 方法多样化,地基处理的新技术、新理论不断涌现并日趋完善,地基处理已成为基础工程领 域中一个较有生命力的分枝。根据地基处理方法的基本原理,基本上可以分为如表 6-1 所示 的几类。 地基处理方法的分类 表 6-1 物理处理 化学处理 热学处理 置换 排水 挤密 加筋 搅拌 灌浆 热加固 冻结 但必须指出,很多地基处理方法具有多重加固处理的功能,例如碎石桩具有置换、挤密、 排水和加筋的多重功能;而石灰桩则具有挤密、吸水和置换等功能。地基处理的主要方法、 适用范围及加固原理,参见表 6-2。 地基处理的主要方法、适用范围和加固原理 表 6-2 分类 方法 加固原理 适用范围 置 换 换土垫层法 采用开挖后换好土回填的方法;对于厚度较小的淤泥质 土层,亦可采用抛石挤淤法。地基浅层性能良好的垫层, 与下卧层形成双层地基。垫层可有效地扩散基底压力, 提高地基承载力和减少沉降量。 各种浅层的软弱土地基 振冲置换法 利用振冲器在高压水的作用下边振、边冲,在地基中成 孔,在孔内回填碎石料且振密成碎石桩。碎石桩柱体与 桩间土形成复合地基,提高承载力,减少沉降量 cu20kPa 的粘性土、松散 粉土和人工填土、湿陷性 黄土地基等 强夯置换法 采用强夯时,夯坑内回填块石、碎石挤淤置换的方法, 形成碎石墩柱体,以提高地基承载力和减少沉降量。 浅层软弱土层较薄的地 基 碎石桩法 采用沉管法或其他技术,在软土中设置砂或碎石桩柱 体,置换后形成复合地基,可提高地基承载力,降低地 基沉降。同时,砂、石柱体在软粘土中形成排水通道, 加速固结 一般软土地基 石灰桩法 在软弱土中成孔后,填入生石灰或其他混合料,形成竖 向石灰桩柱体,通过生石灰的吸水膨胀、放热以及离子 交换作用改善桩柱体周围土体的性质,形成石灰桩复合 地基,以提高地基承载力,减少沉降量 人工填土、软土地基 EPS 轻填法 发泡聚苯乙烯(EPS)重度只有土的 1/501/100,并具 有较高的强度和低压缩性,用于填土料,可有效减少作 用于地基的荷载,且根据需要用于地基的浅层置换 软弱土地基上的填方工 程
分类 方法 加固原理 适用范围 加载预压法在预压荷载作用下,通过一定的预压时间,天然地基被软土、粉土、杂填土、冲 压缩、固结,地基士的强度提高,压缩性降低。在达到填土等 设计要求后,卸去预压荷载,再建造上部结构,以保证 地基稳定和变形满足要求。当天然土层的渗透性较低 排水固结 时,为了缩短渗透固结的时间,加速固结速率,可在地 基中设置竖向排水通道,如砂井、排水板等。加载预压 的荷载,一般有利用建筑物自身荷载、堆载或真空预压 超载预压法基本原理同加载预压法,但预压荷载超过上部结构的荷|淤泥质粘性土和粉土 载。一般在保证地基稳定的前提下,超载预压方法的效 果更好,特别是对降低地基次固结沉降十分有效 强夯法 采用重量100400N的夯锤,从高处自由落下,在强松散碎石土、砂土,低饱 烈的冲击力和振动力作用下,地基土密实,可以提高承和度粉土和粘性土,湿陷 载力,减少沉降量 性黄土、杂填土和素填土 振冲密实法振冲器的强力振动,使得饱和砂层发生液化,砂粒重新「粘粒含量少于10%的疏 振 排列,孔隙率降低;同时,利用振冲器的水平振冲力,松散砂土地基 回填碎石料使得砂层挤密,达到提高地基承载力,降低 沉降的目的 挤密碎(砂)施工方法与排水中的碎(砂)石桩相同,但是,沉管过|松散砂土、杂填土、非饱 石桩法 程中的排土和振动作用,将桩柱体之间土体挤密,并形和粘性土地基、黄土地基 成碎(砂)石桩柱体复合地基,达到提高地基承载力和 减小地基沉降的目的 士、灰土桩法采用沉管等技术,在地基中成孔,回填土或灰土形成竖地下水位以上的湿陷性 向加固体,施工过程中排土和振动作用,挤密土体,并黄土、杂填土、素填土地 形成复合地基,提高地基承载力,减小沉降量 加筋土法 在土体中加入起抗拉作用的筋材,例如土工合成材料、浅层软弱土地基处理、挡 金属材料等,通过筋土间作用,达到减小或抵抗土压力:土墙结构 调整基底接触应力的目的。可用于支挡结构或浅层地基 处理 加「锚固法 E要有土钉和土锚法,土钉加固作用依赖于土钉与其周|边坡加固,土锚技术应用 筋 围土间的相互作用;土锚则依赖于锚杆另一端的锚固作中,必须有可以锚固的土 用,两者主要功能是减少或承受水平向作用力 层、岩层或构筑物 竖向加固体在地基中设置小直径刚性桩、低等级混凝士桩等竖向加各类软弱土地基、尤其是 复合地基法固体,例如CFG桩、二灰混凝土桩等,形成复合地基,较深厚的软土地基 提高地基承载力,减少沉降量
分类 方法 加固原理 适用范围 排 水 固 结 加载预压法 在预压荷载作用下,通过一定的预压时间,天然地基被 压缩、固结,地基土的强度提高,压缩性降低。在达到 设计要求后,卸去预压荷载,再建造上部结构,以保证 地基稳定和变形满足要求。当天然土层的渗透性较低 时,为了缩短渗透固结的时间,加速固结速率,可在地 基中设置竖向排水通道,如砂井、排水板等。加载预压 的荷载,一般有利用建筑物自身荷载、堆载或真空预压 等 软土、粉土、杂填土、冲 填土等 超载预压法 基本原理同加载预压法,但预压荷载超过上部结构的荷 载。一般在保证地基稳定的前提下,超载预压方法的效 果更好,特别是对降低地基次固结沉降十分有效 淤泥质粘性土和粉土 振 密 挤 密 强夯法 采用重量 100400kN 的夯锤,从高处自由落下,在强 烈的冲击力和振动力作用下,地基土密实,可以提高承 载力,减少沉降量 松散碎石土、砂土,低饱 和度粉土和粘性土,湿陷 性黄土、杂填土和素填土 地基 振冲密实法 振冲器的强力振动,使得饱和砂层发生液化,砂粒重新 排列,孔隙率降低;同时,利用振冲器的水平振冲力, 回填碎石料使得砂层挤密,达到提高地基承载力,降低 沉降的目的 粘粒含量少于 10%的疏 松散砂土地基 挤密碎(砂) 石桩法 施工方法与排水中的碎(砂)石桩相同,但是,沉管过 程中的排土和振动作用,将桩柱体之间土体挤密,并形 成碎(砂)石桩柱体复合地基,达到提高地基承载力和 减小地基沉降的目的 松散砂土、杂填土、非饱 和粘性土地基、黄土地基 土、灰土桩法 采用沉管等技术,在地基中成孔,回填土或灰土形成竖 向加固体,施工过程中排土和振动作用,挤密土体,并 形成复合地基,提高地基承载力,减小沉降量 地下水位以上的湿陷性 黄土、杂填土、素填土地 基 加 筋 加筋土法 在土体中加入起抗拉作用的筋材,例如土工合成材料、 金属材料等,通过筋土间作用,达到减小或抵抗土压力; 调整基底接触应力的目的。可用于支挡结构或浅层地基 处理 浅层软弱土地基处理、挡 土墙结构 锚固法 主要有土钉和土锚法,土钉加固作用依赖于土钉与其周 围土间的相互作用;土锚则依赖于锚杆另一端的锚固作 用,两者主要功能是减少或承受水平向作用力 边坡加固,土锚技术应用 中,必须有可以锚固的土 层、岩层或构筑物 竖向加固体 复合地基法 在地基中设置小直径刚性桩、低等级混凝土桩等竖向加 固体,例如 CFG 桩、二灰混凝土桩等,形成复合地基, 提高地基承载力,减少沉降量 各类软弱土地基、尤其是 较深厚的软土地基
分类 方法 加固原理 适用范围 深层搅拌法利用深层搅拌机械,将固化剂(一般的无机固化剂为水饱和软粘土地基,对于有 泥、石灰、粉煤灰等)在原位与软弱土搅拌成桩柱体,机质较高的泥炭质土或 化 可以形成桩柱体复合地基、格栅状或连续墙支挡结构。泥炭、含水量很高的淤泥 作为复合地基,可以提高地基承载力和减少变形:作为和淤泥质土,适用性宜通 支挡结构或防渗,可以用作基坑开挖时,重力式支挡结过试验确定 构,或深基坑的止水帷幕。水泥系深层搅拌法,一般有 两大类方法,即喷浆搅拌法和喷粉搅拌法 化「灌浆或注浆有渗入灌浆、劈裂灌浆、压密灌浆以及高压注浆等多种类软弱土地基,岩石地基 工法,浆液的种类较多 基加固,建筑物纠偏等加 固处理 上述表中的各类地基处理方法,均有各自的特点和作用机理,在不同的土类中产生不同 的加固效果,并也存在着局限性。地基的工程地质条件是千变万化的,工程对地基的要求也 是不尽相同的,材料、施工机具和施工条件等亦存在显著差别,没有哪一种方法是万能的 因此,对于每一工程必须进行综合考虑,通过方案的比选,选择一种技术可靠、经济合理、 施工可行的方案,既可以是单一的地基处理方法,也可以是多种方法的综合处理。 第二节软土地基 软土是指沿海的滨海相、三角洲相、内陆平原或山区的河流相、湖泊相、沼泽相等主要 由细粒土组成的土,具有孔隙比大(一般大于1)、天然含水量高(接近或大于液限)、压缩 性高(a1-2>0.5MPa-)和强度低的特点,多数还具有高灵敏度的结构性。主要包括淤泥、淤 泥质粘性土、淤泥质粉土、泥炭、泥炭质土等。 软土的成因及划分 软土按沉积环境分类主要有下列几种类型: (一)滨海沉积 1.滨海相:常与海浪岸流及潮汐的水动力作用形成较粗的颗粒(粗、中、细砂)相掺杂 使其不均匀和极松软,增强了淤泥的透水性能,易于压缩固结。 2.泻湖相:颗粒微细、孔隙比大、强度低、分布范围较宽阔,常形成海滨平原。在泻 湖边缘,表层常有厚约0.3~2.0m的泥炭堆积。底部含有贝壳和生物残骸碎屑 3.溺谷相:孔隙比大、结构松软、含水量高,有时甚于泻湖相。分布范围略窄,在其 边缘表层也常有泥炭沉积。 4.三角洲相:由于河流及海潮的复杂交替作用,而使淤泥与薄层砂交错沉积,受海流 与波浪的破坏,分选程度差,结构不稳定,多交错成不规则的尖灭层或透镜体夹层,结构疏 松软,颗粒细小。如上海地区深厚的软土层中央有无数的极薄的粉砂层,为水平渗流提供了 良好条件。 (二)湖泊沉积 湖泊沉积是近代淡水盆地和咸水盆地的沉积。沉积物中夹有粉砂颗粒,呈现明显的层理。 淤泥结构松软,呈暗灰、灰绿或暗黑色,厚度一般为10m左右,最厚者可达25m。 (三)河滩沉积 主要包括河漫滩相和牛轭湖相。成层情况较为复杂,成分不均一,走向和厚度变化大, 平面分布不规则。一般常呈带状或透镜状,间与砂或泥炭互层,其厚度不大,一般小于10m
分类 方法 加固原理 适用范围 化 学 固 化 深层搅拌法 利用深层搅拌机械,将固化剂(一般的无机固化剂为水 泥、石灰、粉煤灰等)在原位与软弱土搅拌成桩柱体, 可以形成桩柱体复合地基、格栅状或连续墙支挡结构。 作为复合地基,可以提高地基承载力和减少变形;作为 支挡结构或防渗,可以用作基坑开挖时,重力式支挡结 构,或深基坑的止水帷幕。水泥系深层搅拌法,一般有 两大类方法,即喷浆搅拌法和喷粉搅拌法 饱和软粘土地基,对于有 机质较高的泥炭质土或 泥炭、含水量很高的淤泥 和淤泥质土,适用性宜通 过试验确定 灌 浆 或 注 浆 法 有渗入灌浆、劈裂灌浆、压密灌浆以及高压注浆等多种 工法,浆液的种类较多。 类软弱土地基,岩石地基 基加固,建筑物纠偏等加 固处理 上述表中的各类地基处理方法,均有各自的特点和作用机理,在不同的土类中产生不同 的加固效果,并也存在着局限性。地基的工程地质条件是千变万化的,工程对地基的要求也 是不尽相同的,材料、施工机具和施工条件等亦存在显著差别,没有哪一种方法是万能的。 因此,对于每一工程必须进行综合考虑,通过方案的比选,选择一种技术可靠、经济合理、 施工可行的方案,既可以是单一的地基处理方法,也可以是多种方法的综合处理。 第二节 软土地基 软土是指沿海的滨海相、三角洲相、内陆平原或山区的河流相、湖泊相、沼泽相等主要 由细粒土组成的土,具有孔隙比大(一般大于 1)、天然含水量高(接近或大于液限)、压缩 性高(a1-2>0.5MPa-1)和强度低的特点,多数还具有高灵敏度的结构性。主要包括淤泥、淤 泥质粘性土、淤泥质粉土、泥炭、泥炭质土等。 一.软土的成因及划分 软土按沉积环境分类主要有下列几种类型: (一)滨海沉积 1.滨海相: 常与海浪岸流及潮汐的水动力作用形成较粗的颗粒(粗、中、细砂)相掺杂, 使其不均匀和极松软,增强了淤泥的透水性能,易于压缩固结。 2.泻湖相: 颗粒微细、孔隙比大、强度低、分布范围较宽阔,常形成海滨平原。在泻 湖边缘,表层常有厚约 0.3~2.0m 的泥炭堆积。底部含有贝壳和生物残骸碎屑。 3.溺谷相: 孔隙比大、结构松软、含水量高,有时甚于泻湖相。分布范围略窄,在其 边缘表层也常有泥炭沉积。 4.三角洲相: 由于河流及海潮的复杂交替作用,而使淤泥与薄层砂交错沉积,受海流 与波浪的破坏,分选程度差,结构不稳定,多交错成不规则的尖灭层或透镜体夹层,结构疏 松软,颗粒细小。如上海地区深厚的软土层中央有无数的极薄的粉砂层,为水平渗流提供了 良好条件。 (二)湖泊沉积 湖泊沉积是近代淡水盆地和咸水盆地的沉积。沉积物中夹有粉砂颗粒,呈现明显的层理。 淤泥结构松软,呈暗灰、灰绿或暗黑色,厚度一般为 10m 左右,最厚者可达 25m。 (三)河滩沉积 主要包括河漫滩相和牛轭湖相。成层情况较为复杂,成分不均一,走向和厚度变化大, 平面分布不规则。一般常呈带状或透镜状,间与砂或泥炭互层,其厚度不大,一般小于 l0m
(四)沼泽沉积 分布在地下水、地表水排泄不畅的低洼地带,多以泥炭为主,且常出露于地表。下部分 布有淤泥层或底部与泥炭互层 软土由于沉积年代、环境的差异,成因的不同,它们的成层情况,粒度组成,矿物成分 有所差别,使工程性质有所不同。不同沉积类型的软土,有时其物理性质指标虽较相似,但 工程性质并不很接近,不应借用。软土的力学性质参数宜尽可能通过现场原位测试取得。 软土的工程特性:含水量较高,孔隙比较大:抗剪强度低:压缩性较高:;渗透性很小:结构 性明显;流变性显著 、软土地基的承载力、沉降和稳定性的计算 在软土地基设计计算中,由于它的工程特性常需解决地基承载力、沉降和稳定性的计算 问题故与一般地基土的计算有所区别,现分述如下。 (一)软土地基的承载力 软土地基承载力应根据地区建筑经验,并结合下列因素综合确定:①软土成层条件、应 力历史、力学特性及排水条件;②上部结构的类型、刚度、荷载性质、大小和分布,对不均 匀沉降的敏感性:③基础的类型、尺寸、埋深、刚度等:④施工方法和程序;⑤采用预压排 水处理的地基,应考虑软土固结排水后强度的增长 1.根据极限承载力理论公式确定 饱和软粘土上条形基础的极限承载力pu(kPa按普朗特尔一雷斯诺( Prandtl- Reissner))极 限荷载公式(参见土力学教材)由=0,q=y2h确定为 Pu=5.14C +r,h (6-1) 式中:Cυ一软土不排水抗剪强度,可用三轴仪、十字板剪切仪测定,也可取室内无侧限抗 压强度q之半计算; y2基底以上土的重度(kN/m3),地下水位以下为浮重度; h一基础埋置深度(m)。当受水流冲刷时,由一般冲刷线算起 据此,考虑矩形基础的形状修正系数及水平荷载作用时的影响系数,并考虑必要的安 全系数,《公桥基规》提出软土地基容许承载力]P为 k C+y,h (6-2) 式中:m一安全系数1.5~2.5,软土灵敏度高且基础长宽比小者用高值 k一基础形状及倾斜荷载的修正系数,属半经验性质的系数,当矩形基础上作用有倾 斜荷载时 bY.04 =1+0.2-‖1 bl c
(四)沼泽沉积 分布在地下水、地表水排泄不畅的低洼地带,多以泥炭为主,且常出露于地表。下部分 布有淤泥层或底部与泥炭互层。 软土由于沉积年代、环境的差异,成因的不同,它们的成层情况,粒度组成,矿物成分 有所差别,使工程性质有所不同。不同沉积类型的软土,有时其物理性质指标虽较相似,但 工程性质并不很接近,不应借用。软土的力学性质参数宜尽可能通过现场原位测试取得。 软土的工程特性:含水量较高,孔隙比较大;抗剪强度低;压缩性较高;渗透性很小;结构 性明显;流变性显著 三、软土地基的承载力、沉降和稳定性的计算 在软土地基设计计算中,由于它的工程特性常需解决地基承载力、沉降和稳定性的计算 问题,故与一般地基土的计算有所区别,现分述如下。 (一) 软土地基的承载力 软土地基承载力应根据地区建筑经验,并结合下列因素综合确定:①软土成层条件、 应 力历史、力学特性及排水条件;②上部结构的类型、刚度、荷载性质、大小和分布,对不均 匀沉降的敏感性;③基础的类型、尺寸、埋深、刚度等;④施工方法和程序;⑤采用预压排 水处理的地基,应考虑软土固结排水后强度的增长。 1.根据极限承载力理论公式确定 饱和软粘土上条形基础的极限承载力 pu(kPa)按普朗特尔—雷斯诺(Prandtl—Reissner)极 限荷载公式(参见土力学教材)由 =0, q = 2h 确定为 pu = 5.14Cu + 2h (6-1) 式中: Cu —软土不排水抗剪强度,可用三轴仪、十字板剪切仪测定,也可取室内无侧限抗 压强度 qu 之半计算; 2 —基底以上土的重度(kN/m3 ),地下水位以下为浮重度; h —基础埋置深度(m)。当受水流冲刷时,由一般冲刷线算起。 据此,考虑矩形基础的形状修正系数及水平荷载作用时的影响系数,并考虑必要的安 全系数,《公桥基规》提出软土地基容许承载力 (kPa)为 k C h m p u 2 5.14 = + (6-2) 式中:m—安全系数 1.5~2.5,软土灵敏度高且基础长宽比小者用高值; kp—基础形状及倾斜荷载的修正系数,属半经验性质的系数,当矩形基础上作用有倾 斜荷载时 − = + u p C Q l bl b k 0.4 1 0.2 1
b-基础宽度(m) l一垂直于b边的基础长度(m),当有偏心荷载时,b与1由b与I代替 b=b-2eb,=1-2encb、e分别为荷载在b方向、1方向的偏心矩; Q为荷载的水平分力(kN)。 2.根据土的物理性质指标确定 软土大多是饱和的,天然含水量O基本反映了土的孔隙比的大小,当饱和度S=1时, G =oG(G为土颗粒比重),e为1时,相应天然含水量w约36%;e为1.5时,相应 w约55%,所以一般情况,地基承载力是与其天然含水量密切相关的,根据统计资料w与 软土的容许承载力[]关系如表63所示 软土的容许承载力[ 表6-3 天然含水量w(%) 40 55 65 75 (kPa) 100 在基础埋置深度为hm)的软土地基修正后的容许承载力可按下式计算 (h-3 各符号意义同前,当h<3m时,取h=3m计。 《公桥基规》认为对小桥涵软土基础]可用式(6-3)计算 当按式62)或式3)计算软土修正后的容许承载力]时,必须进行地基沉降验算,保 证满足基础沉降的要求 3.按临塑荷载估算 软土地基承载力,考虑变形因素可按临塑荷载p-公式估算,以控制沉降在一般建筑物 容许范围。条形基础临塑荷载p(kPa)计算式为 P=N,rD+NC 饱和软土=0.C=C时,N=1,N=丌则 pa=3.14C+PD=3.14C+h2h (6-4) 此式用于矩形基础(空间问题)可认为较用于条形基础(平面问题)偏于安全。我国有 些地区和部门,根据该地区软土情况,采用略高于临塑荷载的临界荷载p/4,即允许基础边 缘出现塑性区范围深度不超过基础底宽的1/4。p1/4的计算详见与土力学教材。 4.用原位测试方法确定 由室内试验测定土的物理力学指标(如c等)常受土被扰动影响使结果不正确;而一般土 的承载力理论公式用于软土也会有偏差,因此采用现场原位测试的方法往往能克服以上缺
b—基础宽度(m); l—垂直于 b 边的基础长度(m) ,当有偏心荷载时, b 与 l 由 b ’与 l ’代替, b b b 2e ' = − , L l l 2e ' = − eb、el 分别为荷载在 b 方向、l 方向的偏心矩; Q—为荷载的水平分力(kN)。 2.根据土的物理性质指标确定 软土大多是饱和的,天然含水量 基本反映了土的孔隙比的大小,当饱和度 Sr=l 时, G S G e r = = (G 为土颗粒比重),e 为 1 时,相应天然含水量 w 约 36%;e 为 1.5 时,相应 w 约 55%,所以一般情况,地基承载力是与其天然含水量密切相关的,根据统计资料 w 与 软土的容许承载力 0 关系如表 6-3 所示。 软土的容许承载力 0 表 6-3 天然含水量 w(%) 36 40 45 50 55 65 75 0 (kPa) 100 90 80 70 60 50 40 在基础埋置深度为 h(m)的软土地基修正后的容许承载力 可按下式计算: ( 3) = 0 + 2 h − (6-3) 各符号意义同前,当 h<3m 时,取 h=3m 计。 《公桥基规》认为对小桥涵软土基础 可用式(6—3)计算。 当按式(6-2)或式(6-3)计算软土修正后的容许承载力 时,必须进行地基沉降验算,保 证满足基础沉降的要求。 3.按临塑荷载估算 软土地基承载力,考虑变形因素可按临塑荷载 pcr 公式估算,以控制沉降在一般建筑物 容许范围。条形基础临塑荷载 pcr (kPa)计算式为 pcr = Nq rD + NcC 饱和软土 u = C = Cu 0, 时,Nq=1,Nc= 则 pcr = 3.14Cu + rD = 3.14Cu + r2h (6-4) 此式用于矩形基础(空间问题)可认为较用于条形基础(平面问题)偏于安全。我国有 些地区和部门,根据该地区软土情况,采用略高于临塑荷载的临界荷载 p1/4,即允许基础边 缘出现塑性区范围深度不超过基础底宽的 1/4。p1/4 的计算详见与土力学教材。 4.用原位测试方法确定 由室内试验测定土的物理力学指标(如 cu 等)常受土被扰动影响使结果不正确;而一般土 的承载力理论公式用于软土也会有偏差,因此采用现场原位测试的方法往往能克服以上缺
点。软土地基常用的原位测试方法有:根据载荷试验、旁压试验确定地基承载力,以十字板 剪切试验测定软粘土不排水抗剪强度换算地基承载力值,按标准贯入试验和静力触探结果用 经验公式计算地基承载力等 对较重要或规模较大的工程,确定软土地基承载力宜综合以上方法,结合当地软土沉积 年代,成层情况,下卧层性质等考虑,并注意满足结构物对沉降和稳定的要求 (二)软土地基的沉降计算 软土地基在荷载下沉降变形的主要部分为 固结沉降Sε,此外还包括瞬时沉降Sd与次固 结沉降S,如图6-1所示。软土地基的总沉降 量S为Sd、S、S5之和。 固结沉降S 在荷载作用下,软土地基缓慢地排水固结 发生的沉降称为(主)固结沉降,常用的计算 方法如下。 (1)采用e-p曲线计算 式中:eo一未受基础荷载前,软土地基第i层土分丿 e1一受基础荷载后,软土地基第i层土分层中息目里应刀与啊川型刀作用卜棍正时时 稳定孔隙比 M一土分层厚度,宜为0.5m-10m; (2)采用压缩模量计算 ∑ P一第i层土中点的附加应力 E一压缩摸量,应取第i层土分层中点自重应力至自重应力与附加应力之和的压缩段 算 (3)用e-logp曲线计算 软土根据先期固结压力P,与上覆土自重应力Po关系,天然土层的固结状态可区分为 正常固结状态、超固结状态、欠固结状态。我国海滨平原,内陆平原软土大多属正常固结状 态:少数上覆土层经地质剥蚀的软土及软土上的“硬壳”则属超固结状态:江、河入海口处 及滨海相沉积(以及部分冲填土)则属欠固结土的。对于欠固结软土,在计算其固结沉降Se 时,必须包括在自重应力作用下继续固结所引起的那一部分沉降,若仍按正常固结的土层计 算,所得结果将远小于实际沉降。下面简要介绍考虑先期固结压力的计算公式: ①正常固结、欠固结条件下 1+eoi Pci 式中: 第i层土中的压缩指数,应取分层中点自重应力至自重应力与附加应力
点。软土地基常用的原位测试方法有:根据载荷试验、旁压试验确定地基承载力,以十字板 剪切试验测定软粘土不排水抗剪强度换算地基承载力值,按标准贯入试验和静力触探结果用 经验公式计算地基承载力等。 对较重要或规模较大的工程,确定软土地基承载力宜综合以上方法,结合当地软土沉积 年代,成层情况,下卧层性质等考虑,并注意满足结构物对沉降和稳定的要求。 (二)软土地基的沉降计算 软土地基在荷载下沉降变形的主要部分为 固结沉降 Sc,此外还包括瞬时沉降 Sd 与次固 结沉降 Ss,如图 6-1 所示。软土地基的总沉降 量 S 为 Sd、Sc、Ss 之和。 1.固结沉降 Sc 在荷载作用下,软土地基缓慢地排水固结 发生的沉降称为(主)固结沉降,常用的计算 方法如下。 (1)采用 e—p 曲线计算 i n i i i i c h e e e S + − = =1 0 0 1 1 (6-5) 图 6-1 软土地基沉降的组成 式中:e0i—未受基础荷载前,软土地基第 i 层土分层中点自重应力作用下稳定时的孔隙比; e1i—受基础荷载后,软土地基第 i 层土分层中点自重应力与附加应力作用下稳定时的 稳定孔隙比; hi ——土分层厚度,宜为 0.5m~1.0m; (2)采用压缩模量计算 i n i si i c h E p S = =1 (6-6) i p —第 i 层土中点的附加应力; Esi—压缩摸量,应取第 i 层土分层中点自重应力至自重应力与附加应力之和的压缩段 计算。 (3)采用 e—logp 曲线计算 软土根据先期固结压力 Pc,与上覆土自重应力 P0 关系,天然土层的固结状态可区分为 正常固结状态、超固结状态、欠固结状态。我国海滨平原,内陆平原软土大多属正常固结状 态;少数上覆土层经地质剥蚀的软土及软土上的“硬壳”则属超固结状态;江、河入海口处 及滨海相沉积(以及部分冲填土)则属欠固结土的。对于欠固结软土,在计算其固结沉降 Sc 时,必须包括在自重应力作用下继续固结所引起的那一部分沉降,若仍按正常固结的土层计 算,所得结果将远小于实际沉降。下面简要介绍考虑先期固结压力的计算公式: ①正常固结、欠固结条件下 + + = = ci oi i ci n i i i c p p p C e h S lg 1 1 0 (6-7) 式中: Cci —第 i 层土中的压缩指数,应取分层中点自重应力至自重应力与附加应力
之和的压缩段计算 P;第i层土分层中点的自重应力 Pa-先期固结压力,正常固结时p=po,欠固结时pap2-p2时, P Ca . lgl poi t api P P b.对于应力增量Ap≤P-P时, Ah Poi t (6-9) 式中:C。一第i层土中的回弹指数 2.瞬时沉降Sd 瞬时沉降包括土的两种沉降,一种由地基土弹性变形引起:另一部分是由于软土滲透系 数低,加荷后初期不能排水固结,因而土体产生剪切变形,此时沉降是由软土侧向剪切变形 引起。前一部分可用弹性理论公式计算 (1-4) (6-10) E 式中:p一基础底面平均压力 b-矩形基础的宽度 一软土的泊松比,此处=0.5 Ed一软土的弹性模量,可用三轴仪不排水试验求 一沉降影响系数,与基础形状、计算点位置有关,可自土力学教材中查用 由于工程设计中地基承载力的采用都限制塑性区的开展,因而由土体初期侧向剪切位移 引起的沉降,在总的瞬时沉降中所占比例不大,目前一般不计或略作估算。 对于土体的一维变形情况,瞬时沉降是很小的,特别是当土体饱和时,由于土中水及土 颗粒本身的变形可忽略不计,瞬时沉降接近于零。但是,对于土体的二维或三维变形情况, 瞬时沉降在地基总沉降量中占有相当大的比例,并且与加荷方式和加荷速率有很大的关系, 比如采用一次瞬时加载时产生的瞬时沉降就比采用慢速均匀加载时大得多 有时也用Sa=(0.2~0.3)Sε对瞬时沉降进行估算 3.次固结沉降Ss 长期现场观测表明,在理论计算的固结 过程结束后,软土地基因土骨架的蠕动而继 续发生长期(长达数年以上)的、缓慢的压缩, 称为次固结沉降如图6-2所示。当软土较厚, 含高塑性矿物等较多时,对沉降要求严格的
之和的压缩段计算; i p —第 i 层土分层中点的自重应力; ci p —先期固结压力,正常固结时 pci=poi,欠固结时 pci<poi; ②超固结条件下 a.对于应力增量 p pc − po 时, + + + = = ci oi i ci oi ci si n i oi i c p p p C p p C e h S lg lg 1 1 (6-8) b. 对于应力增量 p pc − po 时, + + = = oi oi i si n i oi i c p p p C e h S lg 1 1 (6-9) 式中: Csi—第 i 层土中的回弹指数 2.瞬时沉降 Sd 瞬时沉降包括土的两种沉降,一种由地基土弹性变形引起;另一部分是由于软土渗透系 数低,加荷后初期不能排水固结,因而土体产生剪切变形,此时沉降是由软土侧向剪切变形 引起。前一部分可用弹性理论公式计算 bp E S d d (1 ) 2 − = (6-10) 式中: p —基础底面平均压力; b—矩形基础的宽度; —软土的泊松比,此处 =0.5 Ed—软土的弹性模量,可用三轴仪不排水试验求; —沉降影响系数,与基础形状、计算点位置有关,可自土力学教材中查用。 由于工程设计中地基承载力的采用都限制塑性区的开展,因而由土体初期侧向剪切位移 引起的沉降,在总的瞬时沉降中所占比例不大,目前一般不计或略作估算。 对于土体的一维变形情况,瞬时沉降是很小的,特别是当土体饱和时,由于土中水及土 颗粒本身的变形可忽略不计,瞬时沉降接近于零。但是,对于土体的二维或三维变形情况, 瞬时沉降在地基总沉降量中占有相当大的比例,并且与加荷方式和加荷速率有很大的关系, 比如采用一次瞬时加载时产生的瞬时沉降就比采用慢速均匀加载时大得多。 有时也用 Sd=(0.2~0.3)Sc对瞬时沉降进行估算。 3.次固结沉降 Ss 长期现场观测表明,在理论计算的固结 过程结束后,软土地基因土骨架的蠕动而继 续发生长期(长达数年以上)的、缓慢的压缩, 称为次固结沉降如图 6-2 所示。当软土较厚, 含高塑性矿物等较多时,对沉降要求严格的
建筑物不宜忽视次固结沉降S3。 S3可按下式计算 S,=∑ (6-11) 图6-2次固结沉降图 式中:Ca—第i层土的次固结系数,可由在固结压力下试验的e-lgt曲线如图62示求取 其值与粒径、矿物成分有关,一般Ca=0.005~0.03 e2i一第i层软土在固结压力下完成排水固结时的孔隙比; t2、ts一完成固结(固结度为100%)时间和计算次固结沉降的时间,t>t。 由于对软土的次固结性状仍了解不够,无论对于它的机理、变化规律、影响因素、计算 方法和试验测定等都有待进一步深入探讨。 软土地基沉降量S还可以利用观察到的建筑物的若干随时间(t、t等)变化的沉降值S1 Sa、St-t关系等,推算该建筑物的后期沉降S:及最终沉降S。常用的推算方法是将实测 的沉降一时间(S:一t曲线拟合为指数曲线、双曲线等而用数学方法推算S1或S。。具体详见 土力学教材。 综上所述,软土地基的沉降应为上述三种沉降之和,即S=S+S+S,但是由 于瞬时沉降和次固结沉降的计算方法和理论还处于初步阶段,故工程上也常用将一维固结沉 降计算的结果乘以一个沉降计算经验的修正系数ms计算 S (6-12) 在《公桥基规》规定:当软土压缩模量Es=1.0~40MPa时,m=1.8-1.1,以提高其计 算精度。由于软土地基沉降的复杂性,ms的取值尚待补充完善 (三)软土地基的稳定性分析 分析软土地基上建筑物承受水平推力后,由于地基土抗剪强度低,发生基础连同部分地 基土在土中剪切滑移失稳的可能性。在软土地基上桥台、挡土墙等承受侧向推力的建筑物在 保证其地基承载力、沉降验算。同时,应进行稳定性的分析。对于桩基础,假定的滑动弧面 可认为发生在桩底以上如图6-3所示(只有软土层很厚而桩长又很短时才发生在桩底以 但此仅是特例),由于在设计中考虑承台底以上全部外力均由基桩承担,所以分析时可以不 计这部分外力作用于滑动弧面上的分力,只考虑承台底面到滑动弧面以上土柱重,即在图 6-3中对P、M不应计入其影响,而阴形部分土的重力 应计入其影响。不属于基桩承 担的滑裂体范围内的荷载仍应
建筑物不宜忽视次固结沉降 Ss。 Ss 可按下式计算: i n i i ai s h t t e C S + = = 2 3 1 2 lg 1 (6-11) 图 6-2 次固结沉降图 式中:Cai—第 i 层土的次固结系数,可由在固结压力下试验的 e-lgt 曲线如图 6-2 示求取。 其值与粒径、矿物成分有关,一般 Cai=0.005~0.03; e2i—第 i 层软土在固结压力下完成排水固结时的孔隙比; t2、t3—完成固结(固结度为 100%)时间和计算次固结沉降的时间,t3>t2。 由于对软土的次固结性状仍了解不够,无论对于它的机理、变化规律、影响因素、计算 方法和试验测定等都有待进一步深入探讨。 软土地基沉降量 S 还可以利用观察到的建筑物的若干随时间(t1、t2 等)变化的沉降值 Stl、 St2、St 一 t 关系等,推算该建筑物的后期沉降 St 及最终沉降 S 。常用的推算方法是将实测 的沉降一时间(St 一 t)曲线拟合为指数曲线、双曲线等而用数学方法推算 St 或 S 。具体详见 土力学教材。 综上所述,软土地基的沉降应为上述三种沉降之和,即 S = Sd + Sc + Ss ,但是由 于瞬时沉降和次固结沉降的计算方法和理论还处于初步阶段,故工程上也常用将一维固结沉 降计算的结果乘以一个沉降计算经验的修正系数 ms 计算 S = msSc (6-12) 在《公桥基规》规定:当软土压缩模量 Es=1.0~4.0MPa 时,ms=1.8~1.1,以提高其计 算精度。由于软土地基沉降的复杂性,ms 的取值尚待补充完善。 (三)软土地基的稳定性分析 分析软土地基上建筑物承受水平推力后,由于地基土抗剪强度低,发生基础连同部分地 基土在土中剪切滑移失稳的可能性。在软土地基上桥台、挡土墙等承受侧向推力的建筑物在 保证其地基承载力、沉降验算。同时,应进行稳定性的分析。对于桩基础,假定的滑动弧面 可认为发生在桩底以上如图 6-3 所示(只有软土层很厚而桩长又很短时才发生在桩底以下, 但此仅是特例),由于在设计中考虑承台底以上全部外力均由基桩承担,所以分析时可以不 计这部分外力作用于滑动弧面上的分力,只考虑承台底面到滑动弧面以上土柱重,即在图 6-3 中对 P、M 不应计入其影响,而阴形部分土的重力 应计入其影响。不属于基桩承 担的滑裂体范围内的荷载仍应 图 6-3 桩基稳定性分析示意图
四、软土地基基础工程应注意的事项 软土地基的强度、变形和稳定是工程中必须全面、充分注意的问题。从目前国内的勘察、 设计、施工的现状出发,在软土地基上修筑高速公路从基础工程的角度出发,应注意下列一 些事项 (一)要取得代表性很好的地质资料 软土地基上高速公路的设计与施工质量很大程度上取决于地质资料的真实性和代表性, 应认真收集沿线的地形、地貌、工程地质、水文地质、气象等资料,合理地利用钻探、触探、 十字板剪切等现场综合勘探测试方法,做好软土地基各层土样的物理、力学、水理性质的室 内试验,并对上述各项资料进行统计与分析,选择有代表性的技术指标作为设计和施工的依 据 (二)软土地基路堤处治设计应注意的事项有: 1.软土路堤的稳定性分析 2.软土路堤的变形分析 3.软土地基处理方案的合理选择 4.观测和试验 (三)软土地区的桥涵基础设计应注意的事项 1.全面掌握相关资料合理布设桥涵 在软土地区,桥梁位置(尤其是大型桥梁)既要与路线走向协调,又要注意构造物对工程 地质的要求,如果地基土层是深、厚软粘土,特别淤泥、泥炭和高灵敏度的软土,不仅设汁 技术条件复杂,而且将给施工、养护、运营带来许多困难,工程造价也将增大,应力求避免, 另选择软土较薄、均匀、灵敏度较小的地段可能更为有利。对于小桥涵,可优先考虑地表“硬 壳”层较厚,下卧为均匀软土处,以争取采用明挖刚性扩大基础,降低造价。 在确定桥梁总长、桥台位置时,除应考虑泄洪、通航要求外,宜进一步结合桥台和引道 的结构和稳定考虑。如能利用地形、地质条件,适当的布置或延长引桥,使桥台置于地基土 质较好或软土较薄处,以引桥代替高路堤,减少桥台和填土高度,有利于桥台、路堤的结构 和稳定。在造价、占地、养护费用、运营条件等统盘考虑后,在技术上、经济上都是合理的 软土地基上桥梁宜采用轻型结构,减轻上部结构及墩台自重。由于地基易产生较大的不 均匀沉降,一般以采用静定结构或整体性较好的结构为宜,如桥梁上部可采用钢筋混凝土空 心板或箱形梁;桥台采用柱式、支撑梁轻型桥台或框架式等组合式桥台:桥墩宜用桩柱式、 排架式、空心墩等。涵洞宜用钢筋混凝土管涵、整体基础钢筋混凝土盖板涵、箱涵以保证涵 身刚度和整体性 2.软土地基桥梁基础设计应注意事项
四、软土地基基础工程应注意的事项 软土地基的强度、变形和稳定是工程中必须全面、充分注意的问题。从目前国内的勘察、 设计、施工的现状出发,在软土地基上修筑高速公路从基础工程的角度出发,应注意下列一 些事项: (一)要取得代表性很好的地质资料 软土地基上高速公路的设计与施工质量很大程度上取决于地质资料的真实性和代表性, 应认真收集沿线的地形、地貌、工程地质、水文地质、气象等资料,合理地利用钻探、触探、 十字板剪切等现场综合勘探测试方法,做好软土地基各层土样的物理、力学、水理性质的室 内试验,并对上述各项资料进行统计与分析,选择有代表性的技术指标作为设计和施工的依 据。 (二)软土地基路堤处治设计应注意的事项有: 1.软土路堤的稳定性分析 2.软土路堤的变形分析 3.软土地基处理方案的合理选择 4.观测和试验 (三)软土地区的桥涵基础设计应注意的事项 1.全面掌握相关资料合理布设桥涵 在软土地区,桥梁位置(尤其是大型桥梁)既要与路线走向协调,又要注意构造物对工程 地质的要求,如果地基土层是深、厚软粘土,特别淤泥、泥炭和高灵敏度的软土,不仅设汁 技术条件复杂,而且将给施工、养护、运营带来许多困难,工程造价也将增大,应力求避免, 另选择软土较薄、均匀、灵敏度较小的地段可能更为有利。对于小桥涵,可优先考虑地表“硬 壳”层较厚,下卧为均匀软土处,以争取采用明挖刚性扩大基础,降低造价。 在确定桥梁总长、桥台位置时,除应考虑泄洪、通航要求外,宜进一步结合桥台和引道 的结构和稳定考虑。如能利用地形、地质条件,适当的布置或延长引桥,使桥台置于地基土 质较好或软土较薄处,以引桥代替高路堤,减少桥台和填土高度,有利于桥台、路堤的结构 和稳定。在造价、占地、养护费用、运营条件等统盘考虑后,在技术上、经济上都是合理的。 软土地基上桥梁宜采用轻型结构,减轻上部结构及墩台自重。由于地基易产生较大的不 均匀沉降,一般以采用静定结构或整体性较好的结构为宜,如桥梁上部可采用钢筋混凝土空 心板或箱形梁;桥台采用柱式、支撑梁轻型桥台或框架式等组合式桥台;桥墩宜用桩柱式、 排架式、空心墩等。涵洞宜用钢筋混凝土管涵、整体基础钢筋混凝土盖板涵、箱涵以保证涵 身刚度和整体性。 2.软土地基桥梁基础设计应注意事项
我国在软土地区的桥梁基础,常用的是刚性扩大基础(天然地基或人工地基)和桩基础 也有用沉井基础的,现结合软土地基的特点,介绍设计时应注意的几个问题。 (1)刚性扩大浅基础 在较稳定、均匀、有一定强度的软土上修筑对沉降要求不严高的矮、小桥梁,常优先采 用天然地基(或配合砂砾垫层)上的刚性扩大浅基础。如软土表层有较厚的“硬壳”也可考虑 利用。刚性扩大基础常因软土的局部塑性变形而使墩、台发生不均匀沉降,或由于台后填土 的影响使桥台前后端沉降不均而发生后仰也是常见的工程事故,有时还同时使桥台向前滑 移。因此在设计时应注意对基础受力不同的边缘(如桥台基础的前趾和后踵)沉降的验算及抗 滑动、倾覆的验算 防治措施:可采用人工地基如有针对性的布设砂砾垫层,对地基进行加载预压以减少地 基的沉降量和调整沉降差,或采用深层搅拌法,以水泥土搅拌桩或粉体喷射搅拌桩加固软土 地基,按复合地基理论验算地基各控制点的承载力和沉降(加固范围应包括桥头路堤地基的 部分):采取结构措施如改用轻型桥台,埋置式桥台,必要时改用桩基础等;也有建议对 小桥(如单孔跨径不超过8m,孔数不多于3孔)可将相邻墩台刚性扩大基础联合成整体,形 成联合基础板,在满足地基承载力和沉降同时,可以解决桥台前倾后仰和滑移问题。但此时 为避免基础板过厚,常需配置受力钢筋改为柔性基础,应先进行技术、经济方案比较,全面 分析后选用(设计方法可参考第二章柔性基础简化的倒梁法及钢筋混凝土结构设计有关规 定)。为了防止小桥基础向桥孔滑移,也可仅在基础间设置钢筋混凝土(或混凝土)支撑梁。软 土地基上相邻墩、台间距小于5m时,应按《公桥基规》要求考虑邻近墩、台对软土地基所 引起的附加竖向压应力。 (2)桩基础 在较深厚的软土地基,大中型桥梁常采用桩基础,它能获得较好的技术效果,如达到经 济上合理,应是首选的方案。施工方法可以是打入(压入)桩、钻孔灌注桩等。要求基桩穿过 软土深入硬土(基岩)层以保证足够的承载力和很小的沉降量。软土很厚需采用长的摩擦桩 时,应注意桩底软土承载力和沉降的验算,必要时可对桩周软土进行压浆处理或做成扩底桩 打入桩的桩距应较一般土质的适当加大,并注意安排好桩的施打顺序,避免已打入的邻 桩被挤移或上抬,影响质量。钻孔灌注桩一般应先试桩取得施工经验,避免成孔时发生缩孔、 坍孔。 软土地基桩基础设计中,应充分注意由于软土侧向移动而使基桩挠曲和受到的附加水 平压力:由于软土下沉而对基桩发生的负摩阻力,现分述如下: ①地基软土侧限移动对基桩的影响。在软土上桩基础的桥台、挡墙等,由于台后填土 重力的挤压,地基软土侧向移动,桩一一土间产生附加水平压力,引起桩身挠曲,使桥台后 仰和向河槽倾移,甚至基桩折损等事故。在深厚软土上修桥,特别是较髙填土的桥台日益增 多,这类事故时有发生,已引起国内外基础工程界广泛重视。 我国《公桥基规》要求桥台“基桩上部位于摩擦角小于20°的软土中时,应验算施于基 桩的水平力所产生的挠曲”(国外也有提出当台后填土重超过软土屈服强度P=3C时)。在 此情况下,桩身所受到的附加水平力,发生的挠曲与填土高度密切相关,也与基桩穿越的各 土层层厚,软土的力学性质,软土移动量及随深度的变化,基桩刚度及其两端支承条件等变 化因素有关。对此问题的探讨现在还不够充分,实践中一般应用半理论半经验方法处理,更 精确、全面、符合实际的应用方法尚需进一步完善。 为了避免桥台后仰前倾,可采取加强桩顶约束及平衡(或减少)土压力的措施,如采用低 桩承台、埋置式桥台或台前加筑反压护道和挡墙(其地基应经处理),也可采用刚度较大的基 桩和多排桩基础(打入桩可采用部分斜桩),对软土地基加载预压等。 ②地基软土下沉对基桩的影响软土下沉使基桩承受到负摩阻力,将产生较大的沉降或
我国在软土地区的桥梁基础,常用的是刚性扩大基础(天然地基或人工地基)和桩基础, 也有用沉井基础的,现结合软土地基的特点,介绍设计时应注意的几个问题。 (1)刚性扩大浅基础 在较稳定、均匀、有一定强度的软土上修筑对沉降要求不严高的矮、小桥梁,常优先采 用天然地基(或配合砂砾垫层)上的刚性扩大浅基础。如软土表层有较厚的“硬壳”也可考虑 利用。刚性扩大基础常因软土的局部塑性变形而使墩、台发生不均匀沉降,或由于台后填土 的影响使桥台前后端沉降不均而发生后仰也是常见的工程事故,有时还同时使桥台向前滑 移。因此在设计时应注意对基础受力不同的边缘(如桥台基础的前趾和后踵)沉降的验算及抗 滑动、倾覆的验算。 防治措施:可采用人工地基如有针对性的布设砂砾垫层,对地基进行加载预压以减少地 基的沉降量和调整沉降差,或采用深层搅拌法,以水泥土搅拌桩或粉体喷射搅拌桩加固软土 地基,按复合地基理论验算地基各控制点的承载力和沉降(加固范围应包括桥头路堤地基的 一部分);采取结构措施如改用轻型桥台,埋置式桥台,必要时改用桩基础等;也有建议对 小桥(如单孔跨径不超过 8m,孔数不多于 3 孔)可将相邻墩台刚性扩大基础联合成整体,形 成联合基础板,在满足地基承载力和沉降同时,可以解决桥台前倾后仰和滑移问题。但此时 为避免基础板过厚,常需配置受力钢筋改为柔性基础,应先进行技术、经济方案比较,全面 分析后选用(设计方法可参考第二章柔性基础简化的倒梁法及钢筋混凝土结构设计有关规 定)。为了防止小桥基础向桥孔滑移,也可仅在基础间设置钢筋混凝土(或混凝土)支撑梁。软 土地基上相邻墩、台间距小于 5m 时,应按《公桥基规》要求考虑邻近墩、台对软土地基所 引起的附加竖向压应力。 (2)桩基础 在较深厚的软土地基,大中型桥梁常采用桩基础,它能获得较好的技术效果,如达到经 济上合理,应是首选的方案。施工方法可以是打入(压入)桩、钻孔灌注桩等。要求基桩穿过 软土深入硬土(基岩)层以保证足够的承载力和很小的沉降量。软土很厚需采用长的摩擦桩 时,应注意桩底软土承载力和沉降的验算,必要时可对桩周软土进行压浆处理或做成扩底桩。 打入桩的桩距应较一般土质的适当加大,并注意安排好桩的施打顺序,避免已打入的邻 桩被挤移或上抬,影响质量。钻孔灌注桩一般应先试桩取得施工经验,避免成孔时发生缩孔、 坍孔。 软土地基桩基础设计中,应充分注意由于软土侧向移动而使基桩挠曲和受到的附加水 平压力:由于软土下沉而对基桩发生的负摩阻力,现分述如下: ①地基软土侧限移动对基桩的影响。在软土上桩基础的桥台、挡墙等,由于台后填土 重力的挤压,地基软土侧向移动,桩——土间产生附加水平压力,引起桩身挠曲,使桥台后 仰和向河槽倾移,甚至基桩折损等事故。在深厚软土上修桥,特别是较高填土的桥台日益增 多,这类事故时有发生,已引起国内外基础工程界广泛重视。 我国《公桥基规》要求桥台“基桩上部位于摩擦角小于 20о的软土中时,应验算施于基 桩的水平力所产生的挠曲”(国外也有提出当台后填土重超过软土屈服强度 py=3Cu 时)。在 此情况下,桩身所受到的附加水平力,发生的挠曲与填土高度密切相关,也与基桩穿越的各 土层层厚,软土的力学性质,软土移动量及随深度的变化,基桩刚度及其两端支承条件等变 化因素有关。对此问题的探讨现在还不够充分,实践中一般应用半理论半经验方法处理,更 精确、全面、符合实际的应用方法尚需进一步完善。 为了避免桥台后仰前倾,可采取加强桩顶约束及平衡(或减少)土压力的措施,如采用低 桩承台、埋置式桥台或台前加筑反压护道和挡墙(其地基应经处理),也可采用刚度较大的基 桩和多排桩基础(打入桩可采用部分斜桩),对软土地基加载预压等。 ②地基软土下沉对基桩的影响 软土下沉使基桩承受到负摩阻力,将产生较大的沉降或