正在加载图片...
证Vx,x2∈(a,b),且x1<x2,应用拉氏定理得 f(x2)-∫(x1)=∫(2(x2-x1)(x1<5<x2) ∵x2-x1>0, 若在(a,b)内,∫(x)>0,则∫(4)>0, ∫(x2)>f(x1).∴y=∫(x)在a,b上单调增加 若在(a,b内,f(x)<0,则∫(4)<0, f(x2)<∫(x1)∴y=f(x)在a,b上单调减少证 , ( , ),  x1 x2  a b , 且 x1  x2 应用拉氏定理,得 ( ) ( ) ( )( ) ( ) 2 1 x2 x1 x1 x2 f x − f x = f   −    0,  x2 − x1  若在(a,b)内,f (x)  0, 则 f ( )  0, ( ) ( ). 2 x1  f x  f  y = f (x)在[a,b]上单调增加. 若在(a,b)内,f (x)  0, 则 f ( )  0, ( ) ( ). 2 x1  f x  f  y = f (x)在[a,b]上单调减少
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有