正在加载图片...
·1500· 工程科学学报,第40卷,第12期 第5个S2p2峰,对应物质为(S0).因此,辉铜矿 on the electrochemical behavior of chalcocite.Electroanal Chem, 在无菌和有菌体系下氧化过程中生成了上述5种含 1995,388(1-2):81 S产物.结合Cu2p的分析结果可知,无菌体系下主 [6]Yang X W,Sheng Q F,Guo Y X.Microbial Hydrometallurgy. Beijing:Metallurgical Industry Press,2008 要中间氧化产物CuS离子模型为(Cu2+)2(S号) (杨显万,沈庆峰,郭玉霞微生物湿法冶金.北京:冶金工 (S2-),有菌体系下主要中间氧化产物CS离子模 业出版社,2008) 型为(C*)4(S)(S2-),而铜蓝离子模型为 [7]Meng C Y,Liu WY,Liu X Y,et al.Interaction between iron ion (Cu+).(Cu2+)2(S)2(S2-)231,因此无菌和有菌 and chalcopyrite in bioleaching.Cent South Unie Sci Technol, 2015,46(9):3176 体系下辉铜矿中间氧化产物CS并非铜蓝矿物. (孟春瑜,刘文彦,刘兴宇,等.生物浸出中黄铜矿与铁离子 由上述X射线光电子能谱分析结果可以发现, 间的相互影响.中南大学学报(自然科学版),2015,46(9): 辉铜矿在有菌和无菌体系下氧化过程中生成的钝化 3176) 层物质组成较为复杂,主要成分为CS,同时还存在 [8]Elsherief A E,Saba A E,Afifi S E.Anodic leaching of chalcocite 多硫代物(S2-)、S和含有(S0)的氧化中间产物. with periodic cathodic reduction.Miner Eng,1995,8(9):967 [9]Bolorunduro S A.Kinetics of Leaching of Chalcocite in Acid Ferrie 3结论 Sulfate Media:Chemical and Bacterial Leaching [Dissertation]. Vancouver:The University of British Columbia,1999 (1)循环伏安和稳态极化实验验证了辉铜矿两 [10]Hanson J S,Fuerstenau D W.An electrochemical investigation of 步氧化溶解机理,第一步氧化反应在较低电位下即 the adsorption of octyl hydroxamate on chalcocite.Colloids Surf, 可进行,生成具有钝化效果的中间产物,细菌对中间 1987,26:133 产物具有氧化作用,加快辉铜矿的氧化速率:第二步 [11]Bozkurt V,Rao S R,Finch J A.Electrochemistry of chalcocite/ 氧化反应与电位呈正相关,需要在较高电位下才可 heazlewoodite/sulfhydril collector systems.Can Metall 0,1994, 33(3):175 以进行,是整个氧化反应的限制性步骤.Tafel实验 [12]Velasquez P,Leinen D,Pascual J,et al.XPS,SEM,EDX and 结果表明加入细菌后,体系的氧化还原电位升高,辉 ElS study of an electrochemically modified electrode surface of 铜矿的腐蚀电流增大,极化阻力减小,表明细菌可以 natural chalcocite (Cu,S).J Electroanal Chem,2001,510(1- 破坏辉铜矿氧化生成的硫膜,减弱表面的钝化效果, 2):20 加快辉铜矿的溶解速率. [13]Arce E M,Gonzalez I.A comparative study of electrochemical (2)辉铜矿在无菌和有菌体系下氧化过程中电 behavior of chalcopyrite,chalcocite and bornite in sulfuric acid solution.Int J Miner Process,2002,67(1-4):17 极表面生成的产物层主要组分包含CS、多硫化物 [14]Lamache M,Bauer D.Anodic oxidation of cuprous sulfide and (S2-)、(S)和含(S0?)的中间产物等物质,表明 the preparation of nonstoichiometric copper sulfide.Anal Chem, 辉铜矿的氧化遵循多硫代物途径,其中导致辉铜矿 1979,51(8):1320 表面钝化效果的主要物质为CuS. [15]Ghahremaninezhad A,Dixon DG,Asselin E.Electrochemical and XPS analysis of chalcopyrite CuFeS,)dissolution in sulfu- 参考文献 ric acid solution.Electrochim Acta,2013,87:97 [1]Watling H R.The bioleaching of sulphide minerals with emphasis [16]Debemnardi G,Carlesi C.Chemical-electrochemical approaches on copper sulphides-a review.Hydrometallurgy,2006,84 (1- to the study passivation of chalcopyrite.Miner Process Extr Metall 2):81 Rem,2013,34(1):10 [2]Wen J K.Research and Application on Selective Bioleaching of [17]Warren G W,Wadsworth M E,El-Raghy S M.Passive and High Sulfur Low Copper Secondary Copper Sulfide Ore Disserta- transpassive anodic behavior of chalcopyrite in acid solutions.J tion].Beijing:General Research Institute for Nonferrous Metals, Electron Mater,1992.21(1):571 2016 [18]Li A L,Huang S T.Comparison of the electrochemical mecha- (温建康.高硫低铜次生硫化铜矿选择性生物浸出研究与应 nism of chalcopyrite dissolution in the absence or presence of Sul- 用[学位论文].北京:北京有色金属研究总院,2016) folobus metallicus at 70C.Miner Eng.2011,24(13):1520 [3]Hepel M,Hepel T.The anodic dissolution of chalcocite in an am- [19]Gu G H.Hu K T,Zhang X,et al.The stepwise dissolution of moniacal environment.J Electroanal Chem Interfacial Electrochem, chalcopyrite bioleached by Leptospirillum ferriphilum.Electro- 1977,81(1):161 chim Acta,2013,103:50 [4]Gerlach J,Kizeci E.Application of carbon paste electrodes to [20]Zhao H B,Hu M H,Li Y N,et al.Comparison of electrochemi- elucidate hydrometallurgical dissolution processes with special re- cal dissolution of chalcopyrite and bomite in acid culture medi- gard to chalcocite and covellite.Hydrometallurgy,1983,11(3): um.Trans Nonferrous Met Soc China,2015,25(1):303 345 [21]Wu S F,Yang C R,Qin W Q,et al.Sulfur composition on sur- [5]Gomez H,Vedel J,Cordova R,et al.Effect of non-stoichiometry face of chalcopyrite during its bioleaching at 50C.Trans Nonfer-工程科学学报,第 40 卷,第 12 期 第 5 个 S 2p3 / 2峰,对应物质为(SO 2 - 4 ). 因此,辉铜矿 在无菌和有菌体系下氧化过程中生成了上述 5 种含 S 产物. 结合 Cu 2p 的分析结果可知,无菌体系下主 要中间氧化产物 CuS 离子模型为( Cu 2 + )2 ( S 2 - 2 ) (S 2 - ),有菌体系下主要中间氧化产物 CuS 离子模 型为 ( Cu + )4 ( S 2 - 2 ) ( S 2 - ), 而 铜 蓝 离 子 模 型 为 (Cu + )4 (Cu 2 + )2 (S 2 - 2 )2 (S 2 - )2 [3] ,因此无菌和有菌 体系下辉铜矿中间氧化产物 CuS 并非铜蓝矿物. 由上述 X 射线光电子能谱分析结果可以发现, 辉铜矿在有菌和无菌体系下氧化过程中生成的钝化 层物质组成较为复杂,主要成分为 CuS,同时还存在 多硫代物(S 2 - n )、S 0和含有(SO 2 - 4 )的氧化中间产物. 3 结论 (1)循环伏安和稳态极化实验验证了辉铜矿两 步氧化溶解机理,第一步氧化反应在较低电位下即 可进行,生成具有钝化效果的中间产物,细菌对中间 产物具有氧化作用,加快辉铜矿的氧化速率;第二步 氧化反应与电位呈正相关,需要在较高电位下才可 以进行,是整个氧化反应的限制性步骤. Tafel 实验 结果表明加入细菌后,体系的氧化还原电位升高,辉 铜矿的腐蚀电流增大,极化阻力减小,表明细菌可以 破坏辉铜矿氧化生成的硫膜,减弱表面的钝化效果, 加快辉铜矿的溶解速率. (2)辉铜矿在无菌和有菌体系下氧化过程中电 极表面生成的产物层主要组分包含 CuS、多硫化物 (S 2 - n )、(S 0 ) 和含( SO 2 - 4 ) 的中间产物等物质,表明 辉铜矿的氧化遵循多硫代物途径,其中导致辉铜矿 表面钝化效果的主要物质为 CuS. 参 考 文 献 [1] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy, 2006, 84 ( 1鄄 2): 81 [2] Wen J K. Research and Application on Selective Bioleaching of High Sulfur Low Copper Secondary Copper Sulfide Ore [ Disserta鄄 tion]. Beijing: General Research Institute for Nonferrous Metals, 2016 (温建康. 高硫低铜次生硫化铜矿选择性生物浸出研究与应 用[学位论文]. 北京: 北京有色金属研究总院, 2016) [3] Hepel M, Hepel T. The anodic dissolution of chalcocite in an am鄄 moniacal environment. J Electroanal Chem Interfacial Electrochem, 1977, 81(1): 161 [4] Gerlach J, K俟zeci E. Application of carbon paste electrodes to elucidate hydrometallurgical dissolution processes with special re鄄 gard to chalcocite and covellite. Hydrometallurgy, 1983, 11(3): 345 [5] G佼mez H, Vedel J, C佼rdova R, et al. Effect of non鄄stoichiometry on the electrochemical behavior of chalcocite. J Electroanal Chem, 1995, 388(1鄄2): 81 [6] Yang X W, Sheng Q F, Guo Y X. Microbial Hydrometallurgy. Beijing: Metallurgical Industry Press, 2008 (杨显万, 沈庆峰, 郭玉霞. 微生物湿法冶金. 北京: 冶金工 业出版社, 2008) [7] Meng C Y, Liu W Y, Liu X Y, et al. Interaction between iron ion and chalcopyrite in bioleaching. J Cent South Univ Sci Technol, 2015, 46(9): 3176 (孟春瑜, 刘文彦, 刘兴宇, 等. 生物浸出中黄铜矿与铁离子 间的相互影响. 中南大学学报(自然科学版), 2015, 46(9): 3176) [8] Elsherief A E, Saba A E, Afifi S E. Anodic leaching of chalcocite with periodic cathodic reduction. Miner Eng, 1995, 8(9): 967 [9] Bolorunduro S A. Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media: Chemical and Bacterial Leaching [ Dissertation]. Vancouver: The University of British Columbia, 1999 [10] Hanson J S, Fuerstenau D W. An electrochemical investigation of the adsorption of octyl hydroxamate on chalcocite. Colloids Surf, 1987, 26: 133 [11] Bozkurt V, Rao S R, Finch J A. Electrochemistry of chalcocite / heazlewoodite / sulfhydril collector systems. Can Metall Q, 1994, 33(3): 175 [12] Vel觃squez P, Leinen D, Pascual J, et al. XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2 S). J Electroanal Chem, 2001, 510(1鄄 2): 20 [13] Arce E M, Gonz佗lez I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution. Int J Miner Process, 2002, 67(1鄄4): 17 [14] Lamache M, Bauer D. Anodic oxidation of cuprous sulfide and the preparation of nonstoichiometric copper sulfide. Anal Chem, 1979, 51(8): 1320 [15] Ghahremaninezhad A, Dixon D G, Asselin E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2 ) dissolution in sulfu鄄 ric acid solution. Electrochim Acta, 2013, 87: 97 [16] Debernardi G, Carlesi C. Chemical鄄electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev, 2013, 34(1): 10 [17] Warren G W, Wadsworth M E, El鄄Raghy S M. Passive and transpassive anodic behavior of chalcopyrite in acid solutions. J Electron Mater, 1992, 21(1): 571 [18] Li A L, Huang S T. Comparison of the electrochemical mecha鄄 nism of chalcopyrite dissolution in the absence or presence of Sul鄄 folobus metallicus at 70 益 . Miner Eng, 2011, 24(13): 1520 [19] Gu G H, Hu K T, Zhang X, et al. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum. Electro鄄 chim Acta, 2013, 103: 50 [20] Zhao H B, Hu M H, Li Y N, et al. Comparison of electrochemi鄄 cal dissolution of chalcopyrite and bornite in acid culture medi鄄 um. Trans Nonferrous Met Soc China, 2015, 25(1): 303 [21] Wu S F, Yang C R, Qin W Q, et al. Sulfur composition on sur鄄 face of chalcopyrite during its bioleaching at 50 益 . Trans Nonfer鄄 ·1500·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有