子群的判定一判定定理 一 ●G是群,H是G的非空子集。H是G的子群当且 仅当: ●Va,b∈H,abeH,并且 ●Va∈H,l∈H (注意:这里是a在G中的逆元,当H确定为群后,它也是a在H中的逆元) 证明 ●必要性显然(注意群中逆元素的唯一性) 。充分性:只须证明G中的单位元也一定在H中,它 即是H的单位元素。子群的判定 – 判定定理一 G是群,H是G的非空子集。H是G的子群当且 仅当: a,bH, abH, 并且 aH, a -1H (注意:这里a -1是a在G中的逆元,当H确定为群后,它也是a在H中的逆元) 证明 必要性显然(注意群中逆元素的唯一性) 充分性:只须证明G中的单位元也一定在H中,它 即是H的单位元素。 6