正在加载图片...
第4期 氮蓝藻的农业应用研究进展 的生物膜接种剂的必要条件。 bacco seed germination and organogenesis]. Journal of Plant 3)抗病虫害方面:已获得很多具有应用潜力的 Growth Regulation, 2013, 32(4): 758-766 藻株,但需要更多的大田试验以评估其实际应用效11MARs.1D,. uxin producing 果,同时,今后需要深入研究以阐明抗性机制,为 growth and endogenous auxin homeostasis of wheat[J]- Jou 其应用提供科学依据 nal of Basic Microbiology, 2013, 53(12): 996-1003 4)农业环境污染修复方面:利用固氮蓝藻修复12 HUSSAIN A, SHAH ST, RAHMAN H, et al. Effect of IAA on 污水是当前的研究热点,特别是与生物肥料生产和生 in vitro growth and colonization of Nostoc in plant roots Frontiers in Plant Science, 2015, doi: 10.3389/fpls. 2015.00046 物能源制备等结合使其应用前景可期。固氮蓝藻降解有13 HASHTROUDI M S. GHASSEMPOUR A. RIAHI H. et al. En- 机农药方面今后仍然需要在降解关键酶类、降解途径和 dogenous auxins in plant growth-promoting cyanobacteria 藻的工程应用效果等方面进行深入研究。 Anabaena vaginicola and Nostoc calcicola]. Journal of Ap- 5)农业生态环境保护方面:国内在抗旱固沙应 plied Phycology, 2013, 25(2): 379-386 [14] HUSSAIN A, HAMAYUN M, SHAH S T. Root colonization 用研究方面处于国际领先地位,但固氮蓝藻抗旱机 and phytostimulation by phytohormones producing entophytic 理仍未完全阐明,今后需要进一步深入研究其机理, Nostoc sp. AH-12U]. Current Microbiology, 2013, 67(5)- 但其在抗盐碱方面的潜在应用价值尚待评估 624-63 [5]FREBORTOVA J, PLIHAL O, FLOROVA V, et al. Light influ- 参考文献 References ences cytokinin biosynthesis and sensing in Nostoc(cyanobacte- [1] PRASANNA R, BABU S, RANA A, et al. Evaluating the es- [16] PITTOL M, DURSO L, VALIATI V H, et al. Agronomic and tablishment and agronomic proficiency of cyanobacterial consortia as organic options in whea environmental aspects of diazotrophic bacteria in rice fields[ J]. Annals of Microbiology, 2016, 66(2): 511-527 quenceJ] Experimental Agriculture, 2013, 49(3): 416-434 [2] SINGH NK, DHAR D W, TABASSUM R Role of cyano- [17] BARMINSKI R, STORTEBOOM H, DAVIS J G Develop- acteria in crop protection J). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, dium for cultivation of cyanobacteria[J] Journal of Applied 16,86(1):1-8 3] GUPTA V, RATHA S K, SOOD A, et al. New insights into [18 SILVA P G, DE JESUS SILVA H. Biomass production of the biodiversity and applications of cyanobacteria(blue-green Tolypothrix tenuis as a basic component of a cyanobacterial biofertilizer[]. Journal of Applied Phycology, 2013, 25(6): 2(2):79-9 1729-1736 [4] DE P K. The role of blue-green algae in nitrogen fixation in [19] RENUKA N, SOOD A, RATHA S K, et al. Evaluation of mi rice-fields[]. Proceedings of the Royal Society B: Biological croalgal consortia for treatment of primary treated sewage ef- Sciences,1939,127(846):121-139 fluent and biomass production]. Journal of Applied Phy 5]黎尚豪.固氮蓝藻作为晚稻肥源的研究凹.水生生物学集 cology,2013,25(5):1529-1537 刊,1981,7(3):417-423 LI SH. Studies on the nitrogen-fixing blue-green algae as bi [20] MUKHERJEE C, CHOWDHURY R, SUTRADHAR T, et al ofertilizer in the late rice crop). Acta Hydrobiologica Sinica, Parboiled rice effluent: A wastewater niche for microalga 1981,7(3):417-423 and cyanobacteria with growth coupled to comprehensive [6 AKOIJAM C, SINGH A K, RAl A N. Characterization of remediation and phosphorus biofertilization]. Algal Re- free-living cyanobacterial strains and their competence to arch,2016,19:225-236 colonize rice roots[J]. Biology and Fertility of Soils, 2012, [21] CHINTAGUNTA A D, JACOB S, BANERJEE R Integrated 8(6):679-687 methanol and biomanure production from potato waste] WANG R F, PENG B, HUANG K Y. The research progress Waste Management, 2016, 49: 320-325 of COz sequestration by algal bio-fertilizer in China p]. Jour- [22]KUMAR M, PRASANNA R, BIDY ARANI N, et al.Evaluat nal of CO, Utilization. 2015.11: 67-70 [8LU Y D, XU J Phytohormones in microalgae: A new oppor- teria and cyanobacteria and their interactions with seed spice tunity for microalgal biotechnology?[. Trends in Plant Sci- crops]. Scientia Horticulturae, 2013, 164: 94-10 ence,2015,20(5):273-282 [9]ZIZKOVA E, KUBES M, DOBREV P I, et al. Control of cy [23] SHARIATMADARI Z, RIAHI H, ABDI M, et al. Impact tokinin and auxin homeostasis in cyanobacteria and algae] cyanobacterial extracts on the growth and oil content of the Annals of Botany, 2017, 119(1): 151-166 medicinal plant Mentha piperita L.J]. Journal of Applied [10 BOOPATHI T, BALAMURUGAN V, GOPINATH S, et al Phycology,2015,27(6):2279-2287 Characterization of IAA production by the mangrove cyano-[24]孔德柱,张树峰,周玉生,等.固氮鱼腥藻在小麦和西红柿 bacterium Phormidium sp. M1405019 and its influence on to 上的肥效[江苏农业科学,2016,44(10:499502 http://www.ecoagri.ac.cn第 4 期 包江桥等: 固氮蓝藻的农业应用研究进展 581 http://www.ecoagri.ac.cn 的生物膜接种剂的必要条件。 3)抗病虫害方面: 已获得很多具有应用潜力的 藻株, 但需要更多的大田试验以评估其实际应用效 果, 同时, 今后需要深入研究以阐明抗性机制, 为 其应用提供科学依据。 4)农业环境污染修复方面: 利用固氮蓝藻修复 污水是当前的研究热点, 特别是与生物肥料生产和生 物能源制备等结合使其应用前景可期。固氮蓝藻降解有 机农药方面今后仍然需要在降解关键酶类、降解途径和 藻的工程应用效果等方面进行深入研究。 5)农业生态环境保护方面: 国内在抗旱固沙应 用研究方面处于国际领先地位, 但固氮蓝藻抗旱机 理仍未完全阐明, 今后需要进一步深入研究其机理, 但其在抗盐碱方面的潜在应用价值尚待评估。 参考文献 References [1] PRASANNA R, BABU S, RANA A, et al. Evaluating the es￾tablishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping se￾quence[J]. Experimental Agriculture, 2013, 49(3): 416–434 [2] SINGH N K, DHAR D W, TABASSUM R. Role of cyano￾bacteria in crop protection[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2016, 86(1): 1–8 [3] GUPTA V, RATHA S K, SOOD A, et al. New insights into the biodiversity and applications of cyanobacteria (blue-green algae) — Prospects and challenges[J]. Algal Research, 2013, 2(2): 79–97 [4] DE P K. The role of blue-green algae in nitrogen fixation in rice-fields[J]. Proceedings of the Royal Society B: Biological Sciences, 1939, 127(846): 121–139 [5] 黎尚豪. 固氮蓝藻作为晚稻肥源的研究[J]. 水生生物学集 刊, 1981, 7(3): 417–423 LI S H. Studies on the nitrogen-fixing blue-green algae as bi￾ofertilizer in the late rice crop[J]. Acta Hydrobiologica Sinica, 1981, 7(3): 417–423 [6] AKOIJAM C, SINGH A K, RAI A N. Characterization of free-living cyanobacterial strains and their competence to colonize rice roots[J]. Biology and Fertility of Soils, 2012, 48(6): 679–687 [7] WANG R F, PENG B, HUANG K Y. The research progress of CO2 sequestration by algal bio-fertilizer in China[J]. Jour￾nal of CO2 Utilization, 2015, 11: 67–70 [8] LU Y D, XU J. Phytohormones in microalgae: A new oppor￾tunity for microalgal biotechnology?[J]. Trends in Plant Sci￾ence, 2015, 20(5): 273–282 [9] ŽIŽKOVÁ E, KUBEŠ M, DOBREV P I, et al. Control of cy￾tokinin and auxin homeostasis in cyanobacteria and algae[J]. Annals of Botany, 2017, 119(1): 151–166 [10] BOOPATHI T, BALAMURUGAN V, GOPINATH S, et al. Characterization of IAA production by the mangrove cyano￾bacterium Phormidium sp. MI405019 and its influence on to￾bacco seed germination and organogenesis[J]. Journal of Plant Growth Regulation, 2013, 32(4): 758–766 [11] MAZHAR S, COHEN J D, HASNAIN S. Auxin producing non-heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J]. Jour￾nal of Basic Microbiology, 2013, 53(12): 996–1003 [12] HUSSAIN A, SHAH S T, RAHMAN H, et al. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots[J]. Frontiers in Plant Science, 2015, doi: 10.3389/fpls.2015.00046 [13] HASHTROUDI M S, GHASSEMPOUR A, RIAHI H, et al. En￾dogenous auxins in plant growth-promoting cyanobacteria — Anabaena vaginicola and Nostoc calcicola[J]. Journal of Ap￾plied Phycology, 2013, 25(2): 379–386 [14] HUSSAIN A, HAMAYUN M, SHAH S T. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12[J]. Current Microbiology, 2013, 67(5): 624–630 [15] FRÉBORTOVÁ J, PLÍHAL O, FLOROVÁ V, et al. Light influ￾ences cytokinin biosynthesis and sensing in Nostoc (cyanobacte￾ria)[J]. Journal of Phycology, 2017, 53(3): 703–714 [16] PITTOL M, DURSO L, VALIATI V H, et al. Agronomic and environmental aspects of diazotrophic bacteria in rice fields[J]. Annals of Microbiology, 2016, 66(2): 511–527 [17] BARMINSKI R, STORTEBOOM H, DAVIS J G. Develop￾ment and evaluation of an organically certifiable growth me￾dium for cultivation of cyanobacteria[J]. Journal of Applied Phycology, 2016, 28(5): 2623–2630 [18] SILVA P G, DE JESÚS SILVA H. Biomass production of Tolypothrix tenuis as a basic component of a cyanobacterial biofertilizer[J]. Journal of Applied Phycology, 2013, 25(6): 1729–1736 [19] RENUKA N, SOOD A, RATHA S K, et al. Evaluation of mi￾croalgal consortia for treatment of primary treated sewage ef￾fluent and biomass production[J]. Journal of Applied Phy￾cology, 2013, 25(5): 1529–1537 [20] MUKHERJEE C, CHOWDHURY R, SUTRADHAR T, et al. Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization[J]. Algal Re￾search, 2016, 19: 225–236 [21] CHINTAGUNTA A D, JACOB S, BANERJEE R. Integrated bioethanol and biomanure production from potato waste[J]. Waste Management, 2016, 49: 320–325 [22] KUMAR M, PRASANNA R, BIDYARANI N, et al. Evaluat￾ing the plant growth promoting ability of thermotolerant bac￾teria and cyanobacteria and their interactions with seed spice crops[J]. Scientia Horticulturae, 2013, 164: 94–101 [23] SHARIATMADARI Z, RIAHI H, ABDI M, et al. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L.[J]. Journal of Applied Phycology, 2015, 27(6): 2279–2287 [24] 孔德柱, 张树峰, 周玉生, 等. 固氮鱼腥藻在小麦和西红柿 上的肥效[J]. 江苏农业科学, 2016, 44(10): 499–502
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有