z05anb13 枝点=0和二=∞,割线如图红线,上岸6=arg + 积分回路如图,回路内有一个二阶极点z=-1=cr C.+ 2Ti Res f(l) In-+2 Res f(1)= lim In L, \ r i,其中z=-1= L1:=x,f()d== Inx dx=I x elx(n x+i2 r)dx f(-)d== =+2丌i 由大圆弧、小圆弧引理:f(=)d=0,|fc)d==0 综上:2I+2ni →I=丌,且 目例题:计算积分 不失一般性,设:a>0 呵呵,终于找到一个连备 Mathematica(至少102版)也做不出的积分啦,正如李世石的第四局 Clear ["Gloabal*"] f Integrate [f[x], x, Assumptions N[a>0]] Integrate[£[x],{x,0,∞}, Assumptions{a>}] Integrate x, Assumptions沙{a>0 (a2+x2)(n2+Log【x]2) Integrate ,(x, 0, o ), Assumptions a>0F Integrate[f[x]/.a→1,【x,0,∞}] 解: f(x)= 构造复变函数:g(=) (x2+a2)(m2x+) (2+a2)n=解:f (z) = z ln z (z + 1)2 , 枝点 z = 0 和 z = ∞,割线如图红线 ,上岸 θ = arg z = 0 积分回路如图 ,回路内有一个二阶极点 z = -1 = π L1 +CR +L2 +Cr = 2 π Res f (-1) Res f (-1) = lim z-1 z ln z ′ = lim z-1 ln z + 2 2 z = π + 2 2 = π 2 - , 其中 z = -1 = π L1:z = x, L1 f (z) z = 0 ∞ x ln x (x + 1)2 x = I x y CR -R L1 R L2 Cr -1 L2:z = x 2 π, L2 f (z) z = ∞ 0 x π(ln x + 2 π) x (x + 1)2 = I + 2 π 0 ∞ x x (x + 1) 2 由 大圆弧、小圆弧引理 :CR f (z) z = 0, Cr f (z) z = 0 综上:2 I + 2 π 0 ∞ x x (x + 1) 2 = 2 π π 2 - , ⟹ I = π, 且:0 ∞ x x (x + 1)2 = π 2 ☺ 例题:计算积分 I = 0 ∞ x x2 + a2 ln2 x + π2 , 不失一般性 ,设:a > 0 呵呵,终于找到一个连 Mathematica 至少 10.2 版 也做不出的积分啦 ,正如李世石的第四局 。 Clear["Gloabal`*"] f[x_] := 1 (a2 + x2) Log[x]2 + π2 ; Integrate[f[x], x, Assumptions {a > 0}] Integrate[f[x], {x, 0, ∞}, Assumptions {a > 0}] Integrate 1 (a2 + x2) π2 + Log[x]2 , x, Assumptions {a > 0} Integrate 1 (a2 + x2) π2 + Log[x]2 , {x, 0, ∞}, Assumptions {a > 0} Integrate[f[x] /. a 1, {x, 0, ∞}] 0 ∞ 1 (1 + x2) π2 + Log[x]2 x 解:f (x) = 1 x2 + a2 ln2 x + π2 , 构造复变函数 : g(z) = 1 z2 + a2 ln z , z05a.nb 13