12 z05a nb 积分回路如图,回路内有单极点=c(2k-1)nB,k=1,2,3 既然涉及无穷阶枝点,为何奇点只取到k=3? L+++ 2ri>Res( =类似可求得 5丌 Resf(-2)=-,Resf(=3)= L =x,「f(c)d==l x eis(lnx +i2r)dx L2: ==xel2a f(=)d =+2丌i x3+1 由大圆弧、小圆弧引理:f(-)d=0,|f(-)dz=0 综上:2+2丌i 比较方程两边虚实部 =0,且 目例题:计算积分 Vx Inxdx (涉及多值函数的导数) Clear ["Gloabal*"] √x f t= Integrate [f[x], x] Limit[t,x→0] Limit[t,x→∞] Integrate [f[x],[x,0,oo]] 4×2(4+x)1yr9m1(2,21(2,2 9(Vx+(1+x)ArcTan(vx)Log(x积分回路如图 ,回路内有单极点 zk = (2 k-1) π/3, k = 1, 2, 3 既然涉及无穷阶枝点 ,为何奇点只取到 k = 3? (答:因为积分回路在 0 ≤ arg z < 2 π 区间) L1 +CR +L2 +Cr = 2 π k=1 3 Res f (zk) Res f (z1) = lim zz1 z ln z z3 + 1 ′ = π/6 π 3 3 π/3 2 = π 9 , 类似可求得 Res f (z2) = 5 π 9 , Res f (z3) = - π 3 , x y CR -R L1 R L2 Cr L1:z = x, L1 f (z) z = I, L2:z = x 2 π, L2 f (z) z = ∞ 0 x π(ln x + 2 π) x x3 + 1 = I + 2 π 0 ∞ x x x3 + 1 由 大圆弧、小圆弧引理 :CR f (z) z = 0, Cr f (z) z = 0 综上:2 I + 2 π 0 ∞ x x x3 + 1 = 2 π π 3 , 比较方程两边虚实部 I = 0, 且:0 ∞ x x x3 + 1 = π 3 ☺ 例题:计算积分 I = 0 ∞ x ln x x (x + 1)2 , ( 涉及多值函数的导数 ) Clear["Gloabal`*"] f[x_] := x Log[x] (1 + x)2 ; t = Integrate[f[x], x] Limit[t, x 0] Limit[t, x ∞] Integrate[f[x], {x, 0, ∞}] 1 9 (1 + x) -4 x3/2 (1 + x) HypergeometricPFQ 3 2 , 3 2 , 2, 5 2 , 5 2 , -x + 9 - x + (1 + x) ArcTan x Log[x] 0 π π 12 z05a.nb