正在加载图片...
AFCE 物理化学学报 Acta Phys.-Chim. Sin. 2018, 34(4), 377-390 377 Review doi:10.3866/ PKU WHXB201709001 www.whxb.pku.edu.cn 锂硫电池用石墨烯基材料的研究进展 陈克12,孙振华1,方若翩1,李峰1,成会明13 中国科学院金属研究所,沈阳材料科学国家(联合)实验室,沈阳110016 2上海科技大学物质科学与技术学院,上海201210 3清华大学,清华一伯克利深圳学院,广东深圳518055 摘要:锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之 。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着 锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体 隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯」 掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。 关键词:锂硫电池:石墨烯:掺杂:功能化:复合材料 中图分类号:O646 Development of Graphene-based Materials for Lithium-Sulfur Batteries CHEN Ke1, SUN Zhenhua, FANG Ruopian', LI Feng,, CHENG Huiming .,3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016. P. R. Chir 2 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P R China. Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China Abstract: Lithium-sulfur(Li-s) batteries are promising electrochemical energy storage systems because of their high ergy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerr egarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility have shown effectiveness in realizing Li-s batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene- based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives egarding the development trend of graphene-based materials for Li-S batteries have been discussed Received: July 24, 2017; Revised: August 21, 2017; Accepted: August 22, 2017; Published online: September 1, 2017 Corresponding authors. Email: cheng@ imr ac cn; TeL +86-24-23971161(CHENG Huiming ). Email: fli@ imr ac cn; TeL +86-24-83970065(LI Feng). Foundation of China(51525206, 51521091, 51372253, U1401243), the"Strategic Priority Research Program"of the Chinese Academy of ScienceScience The project was supported by the National Key R&D Program of China(2016YFA0200102, 2016YFB0100100, 2014CB932402), the National Natural Science (XDA09010104 ), the Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T06 ), the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015150), the Natural Science Foundation of Liaoning Province, China(2015021012), the Institute of Metal Research (2015-PY03), and the CAS/SAFEA International Partnership Program for Creative Research Teams. 国家重点研发计划(2016YFA0200102,2016YFB0100100,204CB932402),国家自然科学基金项目(51525206,51521091,51372253,U1401243),中科院 先导专项XDA9010104),中国科学院重大突破择优支持项目( KGZD-EW-106),中国科学院青年创新促进会项目(2015150),辽宁省自然科学基金 2015021012),中科院金属研究所创新基金(2015PY03)和创新团队国际合作伙伴计划资助 o Editorial office of Acta Physico-Chimica Sinica物 理 化 学 学 报 Acta Phys. -Chim. Sin. 2018, 34 (4), 377–390 377 Received: July 24, 2017; Revised: August 21, 2017; Accepted: August 22, 2017; Published online: September 1, 2017. * Corresponding authors. Email: cheng@imr.ac.cn; Tel.: +86-24-23971161 (CHENG Huiming). Email: fli@imr.ac.cn; Tel.: +86-24-83970065 (LI Feng). The project was supported by the National Key R&D Program of China (2016YFA0200102, 2016YFB0100100, 2014CB932402), the National Natural Science Foundation of China (51525206, 51521091, 51372253, U1401243), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09010104), the Key Research Program of the Chinese Academy of Sciences (KGZD-EW-T06), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015150), the Natural Science Foundation of Liaoning Province, China (2015021012), the Institute of Metal Research (2015-PY03), and the CAS/SAFEA International Partnership Program for Creative Research Teams. 国家重点研发计划(2016YFA0200102, 2016YFB0100100, 2014CB932402),国家自然科学基金项目(51525206, 51521091, 51372253, U1401243),中科院 先导专项(XDA09010104),中国科学院重大突破择优支持项目(KGZD-EW-T06),中国科学院青年创新促进会项目(2015150),辽宁省自然科学基金 (2015021012),中科院金属研究所创新基金(2015-PY03)和创新团队国际合作伙伴计划资助 © Editorial office of Acta Physico-Chimica Sinica [Review] doi: 10.3866/PKU.WHXB201709001 www.whxb.pku.edu.cn 锂硫电池用石墨烯基材料的研究进展 陈克 1,2,孙振华 1,方若翩 1,李峰 1,*,成会明 1,3,* 1中国科学院金属研究所,沈阳材料科学国家(联合)实验室,沈阳 110016 2上海科技大学物质科学与技术学院,上海 201210 3清华大学,清华-伯克利深圳学院,广东 深圳 518055 摘要:锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之 一。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着 锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体、 隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯、 掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。 关键词:锂硫电池;石墨烯;掺杂;功能化;复合材料 中图分类号:O646 Development of Graphene-based Materials for Lithium-Sulfur Batteries CHEN Ke1,2, SUN Zhenhua1, FANG Ruopian1, LI Feng1,* , CHENG Huiming1,3,* 1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China. 2 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China. 3 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China. Abstract: Lithium-sulfur (Li-S) batteries are promising electrochemical energy storage systems because of their high theoretical energy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerns regarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility, have shown effectiveness in realizing Li-S batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene-based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives regarding the development trend of graphene-based materials for Li-S batteries have been discussed
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有