正在加载图片...
●直角坐标到极坐标的变换 X=rsinecoso (1) r2=x2+y2+z y=rsinesind(2) C00=z/(×2+y2+2)12(5) e z=rose tgo=y/x 0(or)a,(00o,(a)o Ox (Ox Or (Ox 80( Oxag (4)式对x求偏导,并按(1)式代入, =2x=2rsn6cosφ y or sin e cos (7 (5)对x求偏导,将(3)(1)(4)代入, sIn x2+y2+=2)2(2x) a0 coscos o (8 rcos 0.rsin 0 cos or sin 0 cos 0 coso●直角坐标到极坐标的变换               +           +           =   x r x x r x  2 2x 2rsin  cos x r r  = =        x=rsincos (1) y=rsinsin (2) z=rcos (3) r 2=x2+y2+z2 (4) cos=z/(x 2+y2+z2 ) 1/2 (5) tg=y/x (6) (4)式对x求偏导,并按(1)式代入, = sin  cos (7)    x r (5)对x求偏导,将(3)(1)(4)代入, ( ) (2 ) 2 1 sin 2 2 2 3/ 2 z x y z x x −  + +      = −   −   3 cos sin cos − = −r  r   r r sin  cos cos = − (8) cos cos x r    =    x y z e 0   r z x y
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有